精英家教網 > 初中數學 > 題目詳情
(2010•丹東)如圖,小穎利用有一個銳角是30°的三角板測量一棵樹的高度,已知她與樹之間的水平距離BE為5m,AB為1.5m(即小穎的眼睛距地面的距離),那么這棵樹高是( )
A.()m
B.()m
C.m
D.4m
【答案】分析:應先根據相應的三角函數值算出CD長,再加上AB長即為樹高.
解答:解:∵AD=BE=5米,∠CAD=30°,
∴CD=AD•tan30°=5×=(米).
∴CE=CD+DE=CD+AB=(米).
故選A.
點評:此題主要考查學生對坡度坡角的理解及解直角三角形的綜合運用能力.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)截取CE=OF=AD=m,且E,F,D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數關系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年四川省成都市武侯區(qū)中考數學一模試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)截取CE=OF=AD=m,且E,F,D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數關系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鎮(zhèn)江市句容市中考數學一模試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)截取CE=OF=AD=m,且E,F,D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數關系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年5月湖北省隨州市曾都區(qū)十校聯考初三數學試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)截取CE=OF=AD=m,且E,F,D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數關系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年遼寧省十二市中考數學試卷(解析版) 題型:解答題

(2010•丹東)如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)截取CE=OF=AD=m,且E,F,D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數關系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案