【題目】某商店欲購進 A、B 兩種商品,若購進 A 種商品 5 件和 B 種商品 4 件需 300 元;購進 A 種商品 6 件和 B 種商 品 8 件需 440 元.
(1)求 A、B 兩種商品每件的進價分別為多少元?
(2)若該商店每銷售 1 件 A 種商品可獲利 8 元,每銷售 1 件 B 種商品可獲利 6 元,該商店準備購進 A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過 344 元,則至少購進多少件 A 商品?
【答案】(1)A種商品進價為40元,B種商品進價為25元;(2)至少購進23件A商品.
【解析】
(1)設(shè)A種商品進價為x元,B種商品進價為y元.由購進A種商品5件和B種商品4件需300元和購進A種商品6件和B種商品8件需440元建立二元一次方程組,求解即可;
(2)設(shè)購進A種商品a件,則購進B種商品(50a)件.根據(jù)獲得的總利潤超過344元,建立不等式求解即可.
解:(1)設(shè)A種商品進價為x元,B種商品進價為y元.
由題意,得,
解得:,
答:A種商品進價為40元,B種商品進價為25元;
(2)設(shè)購進A種商品a件,則購進B種商品(50a)件.
由題意,得:8a+6(50a)>344,
解得:a>22,
∵a為整數(shù),
∴a的最小值為23,即至少購進23件A商品,
答:至少購進A種商品23件.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸分別交于A(1,0),B(3,0)兩點,與y軸交于點C.
(1)求此二次函數(shù)解析式;
(2)點D為拋物線的頂點,試判斷△BCD的形狀,并說明理由;
(3)在拋物線的對稱軸上是否存在一點P,使得PC+PA最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個根,且OA>OB.
(1)求的值.
(2)若E為x軸上的點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組想測量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD與地面成30°角,且此時測得高1 m的標桿的影長為2 m,則電線桿的高度為________m(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 是以 為直徑的 上一點, 于點 ,過點 作 的切線,與 的延長線相交于點 , 是 的中點,連接 并延長與 相交于點 ,延長 與 的延長線相交于點 ,且 .
(1)求證:BF=EF;
(2)求;
(3)求的半徑r.
查看答案和解析>>
科目:
來源: 題型:【題目】閱讀材料:用配方法求最值.
已知x,y為非負實數(shù),
∵x+y﹣
∴x+y≥2,當(dāng)且僅當(dāng)“x=y”時,等號成立.
示例:當(dāng)x>0時,求y= x++4的最小值.
解:+4=6,當(dāng)x=,即x=1時,y的最小值為6.
(1)嘗試:當(dāng)x>0時,求y= 的最小值.
(2)問題解決:隨著人們生活水平的快速提高,小轎車已成為越來越多家庭的交通工具,假設(shè)某種小轎車的購車費用為10萬元,每年應(yīng)繳保險費等各類費用共計0.4萬元,n年的保養(yǎng)、維護費用總和為萬元.問這種小轎車使用多少年報廢最合算(即:使用多少年的年平均費用最少,年平均費用= )?最少年平均費用為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客居住.當(dāng)每個房間每天的定價為160元時,房間會全部住滿;當(dāng)每個房間每天定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,房價定為多少時,賓館利潤最大?并求出一天的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AB=BC,∠B=∠C=90°,P是BC邊上一點,AP⊥PD,E是AB邊上一點,∠BPE=∠BAP.
(1) 如圖1,若AE=PE,直接寫出=______;
(2) 如圖2,求證:AP=PD+PE;
(3) 如圖3,當(dāng)AE=BP時,連BD,則=______,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com