某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個(gè)等級(jí)(等級(jí)越高,質(zhì)量越好.如:二級(jí)產(chǎn)品好于一級(jí)產(chǎn)品).若出售這批護(hù)眼燈,一級(jí)產(chǎn)品每臺(tái)可獲利21元,每提高一個(gè)等級(jí)每臺(tái)可多獲利潤(rùn)1元,工廠每天只能生產(chǎn)同一個(gè)等級(jí)的護(hù)眼燈,每個(gè)等級(jí)每天生產(chǎn)的臺(tái)數(shù)如下表表示:
等級(jí)(x級(jí))
一級(jí)
二級(jí)
三級(jí)

生產(chǎn)量(y臺(tái)/天)
78
76
74

(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺(tái))是等級(jí)x(級(jí))的一次函數(shù),請(qǐng)直接寫(xiě)出與之間的函數(shù)關(guān)系式:_____;
(2)每臺(tái)護(hù)眼燈可獲利z(元)關(guān)于等級(jí)x(級(jí))的函數(shù)關(guān)系式:______;
(3)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級(jí)的護(hù)眼燈,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(1)y=-2x+80;(2);(3)1800元.

試題分析:(1)由于護(hù)眼燈每天的生產(chǎn)量y(臺(tái))是等級(jí)x(級(jí))的一次函數(shù),所以可設(shè)y=kx+b,再把代入,運(yùn)用待定系數(shù)法即可求出y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)“一級(jí)產(chǎn)品每臺(tái)可獲利21元,每提高一個(gè)等級(jí)每臺(tái)可多獲利潤(rùn)1元”即可直接寫(xiě)出答案;
(3)設(shè)工廠生產(chǎn)x等級(jí)的護(hù)眼燈時(shí),獲得的利潤(rùn)為w元.由于等級(jí)提高時(shí),帶來(lái)每臺(tái)護(hù)眼燈利潤(rùn)的提高,同時(shí)銷(xiāo)售量下降.而x等級(jí)時(shí),每臺(tái)護(hù)眼燈的利潤(rùn)為[21+1(x-1)]元,銷(xiāo)售量為y元,根據(jù):利潤(rùn)=每臺(tái)護(hù)眼燈的利潤(rùn)×銷(xiāo)售量,列出w與x的函數(shù)關(guān)系式,再根據(jù)函數(shù)的性質(zhì)即可求出最大利潤(rùn).
試題解析:
(1)由題意,設(shè)y=kx+b.
把(1,78)、(2,76)代入,得,解得,
∴y與x之間的函數(shù)關(guān)系式為y=-2x+80.故答案為y=-2x+80;
(2)∵一級(jí)產(chǎn)品每臺(tái)可獲利21元,每提高一個(gè)等級(jí)每臺(tái)可多獲利潤(rùn)1元
∴每臺(tái)護(hù)眼燈可獲利z(元)關(guān)于等級(jí)x(級(jí))的函數(shù)關(guān)系式:;
(3)設(shè)工廠生產(chǎn)x等級(jí)的護(hù)眼燈時(shí),獲得的利潤(rùn)為w元.
由題意,有w=[21+1(x-1)]y
=[21+1(x-1)](-2x+80)
=-2(x-10)2+1800,
所以當(dāng)x=10時(shí),可獲得最大利潤(rùn)1800元.
故若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)十級(jí)的護(hù)眼燈時(shí),能獲得最大利潤(rùn),最大利潤(rùn)是1800元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知直線與y軸交于點(diǎn)A,拋物線經(jīng)過(guò)點(diǎn)A,其頂點(diǎn)為B,另一拋物線的頂點(diǎn)為D,兩拋物線相交于點(diǎn)C

(1)求點(diǎn)B的坐標(biāo),并說(shuō)明點(diǎn)D在直線的理由;
(2)設(shè)交點(diǎn)C的橫坐標(biāo)為m
①交點(diǎn)C的縱坐標(biāo)可以表示為:        或        ,由此請(qǐng)進(jìn)一步探究m關(guān)于h的函數(shù)關(guān)系式;
②如圖2,若,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)P的坐標(biāo)為           時(shí),四邊形PQAC是平行四邊形;當(dāng)點(diǎn)P的坐標(biāo)為                 時(shí),四邊形PQAC是等腰梯形. (利用備用圖畫(huà)圖,直接寫(xiě)出結(jié)果,不寫(xiě)求解過(guò)程).
(3)若P為線段BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將拋物線的圖象向上平移1個(gè)單位,則平移后的拋物線的解析式為(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=-2(x-3)2+5的頂點(diǎn)坐標(biāo)是                .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

己知關(guān)于x的二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn),則m=         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,拋物線與雙曲線的交點(diǎn)A的橫坐標(biāo)是1,則關(guān)于的不等式的解集是(    )
A.x>1B.x<1C.0<x<1D.-1<x<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

進(jìn)價(jià)為30元/件的商品,當(dāng)售價(jià)為40元/件時(shí),每天可銷(xiāo)售40件,售價(jià)每漲1元,每天少銷(xiāo)售1件,當(dāng)售價(jià)為    元時(shí)每天銷(xiāo)售該商品獲得利潤(rùn)最大,最大利潤(rùn)是        元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
x
﹣3
﹣2
﹣1
0
1
2
3
4
5
y
12
5
0
﹣3
﹣4
﹣3
0
5
12
給出了結(jié)論:
(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
(2)當(dāng)時(shí),y<0;
(3)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)    B.2個(gè)    C. 3個(gè)       D.0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案