【題目】如圖,已知拋物線與軸交于點和點,與軸交于點,連接交拋物線的對稱軸于點,是拋物線的頂點.
求此拋物線的解析式;
直接寫出點和點的坐標(biāo);
若點在第一象限內(nèi)的拋物線上,且,求點坐標(biāo).
【答案】(1);(2),;(3)∴.
【解析】
(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)b、c的值,再代回到原解析式可得到答案;
(2)令x=0,求出對應(yīng)的y的值,可得C點的坐標(biāo),再將二次函數(shù)的解析式配方成頂點式,從而得到拋物線的頂點D的坐標(biāo);
(3)設(shè)P(x,y)(x>0,y>0),根據(jù)題意和三角形的面積公式可列出方程,解方程求得y,再將y代入二次函數(shù)的解析式求出x的值,即得點P的坐標(biāo).
由點和點得,
解得:,
∴拋物線的解析式為;
令,則,
∴,
∵,
∴;
設(shè),
,,
∵,∴,
∴,∴,
解得:(不合題意,舍去),,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O的直徑AB的長為10,弦AC的長為5,∠ACB的平分線交O于點D.
(1)求∠ADC的度數(shù);
(2)求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=,y=
(1)求x2+xy+y2.
(2)若x的小數(shù)部分為a,y的整數(shù)部分為b,求ax+by的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點為,其圖象與軸的交點、的橫坐標(biāo)分別為,.與軸負半軸交于點,在下面五個結(jié)論中:
①;②;③;④只有當(dāng)時,是等腰直角三角形;⑤使為等腰三角形的值可以有四個.
其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線AB交y軸于A(0,a),交x軸于B(b,0),且a,b滿足(a﹣b)2+|3a+5b﹣88|=0.
(1)求點A,B的坐標(biāo);
(2)如圖1,已知點D(2,5),求點D關(guān)于直線AB對稱的點C的坐標(biāo).
(3)如圖2,若P是∠OBA的角平分線上的一點,∠APO=67.5°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=35°,以C為旅轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,點B在邊A′B′上,則∠BDC為( )
A.70°B.90°C.100°D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都是整數(shù)的點叫作整點,直線y=kx-3(k>0),與坐標(biāo)軸圍成的三角形內(nèi)部(不包含邊界)有且只有三個整點,則k的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,羊年春節(jié)到了,小明親手制作了張一樣的卡片,在每張卡片上分別寫上“新”“年”“好”三個字,并隨機放入一個不透明的信封中,然后讓小芳分三次從信封中摸張卡片(每次摸張,摸出不放回).
小芳第一次抽取的卡片是“新”字的概率是多少?
請通過畫樹狀圖或列表,求小芳先后抽取的張卡片分別是“新年好”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com