【題目】在如圖所示的正方形網(wǎng)格中,ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的平面直角坐標(biāo)系中按要求作圖并完成填空:

1)作出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的A1B1C1,寫出點(diǎn)A1的坐標(biāo)_______.

2)作出A1B1C1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°A2B2C2,寫出線段C1C2的長度_____

【答案】1)作圖見解析;(2,﹣1);(2)作圖見解析;

【解析】

1)根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征得出A1B1、C1的坐標(biāo),順次連接即可得△A1B1C1;

2)連接OA1、OB1OC1,利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)得出點(diǎn)A1、B1、C1的對(duì)應(yīng)點(diǎn)A2、B2C2,順次連接即可得到△A2B2C2,利用勾股定理求出C1C2的長即可.

1)如圖,∵點(diǎn)A-2,1),B-4,4),C-4,1),

∴點(diǎn)A、BC關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為:A12,-1),B14,-4),C14,-1),

順次連接A1、B1、C1,△A1B1C1即為所求,

點(diǎn)A1的坐標(biāo)為(2,﹣1);

2)如圖,連接OA1、OB1OC1,

OA2OA1,OB2OB1OC2OC1,使OA1=OA2,OB1=OB2,OC1=OC2,

順次連接A2、B2、C2,△A2B2C2即為所求,

線段C1C2的長度為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,∠A90°EAD上,且CE平分∠BCD,BE平分∠ABC,則下列關(guān)系式中成立的有( 。

,②,③,④CE2CDBC

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),分別在反比例函數(shù),的圖象上.若,,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,該玩具的進(jìn)價(jià)為100/件,市場管理部門規(guī)定,該種玩具每件利潤不能超過進(jìn)價(jià)的60%.現(xiàn)在超市的銷售單價(jià)為140元,每天可售出50件,根據(jù)市場調(diào)查發(fā)現(xiàn),如果銷售單價(jià)每上漲2元,每天銷售量會(huì)減少1件。設(shè)上漲后的銷售單價(jià)為x元,每天售出y.

1)請(qǐng)寫出yx之間的函數(shù)表達(dá)式并寫出x的取值范圍;

2)設(shè)超市每天銷售這種玩具可獲利w元,當(dāng)x為多少元時(shí)w最大,最大為名少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的直徑的延長線上,點(diǎn)上,且AC=CD∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,S是矩形ABCDAD邊上一點(diǎn),點(diǎn)E以每秒kcm的速度沿折線BSSDDC勻速運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)C出發(fā)點(diǎn),以每秒1cm的速度沿邊CB勻速運(yùn)動(dòng).已知點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E也恰好運(yùn)動(dòng)到點(diǎn)C,此時(shí)動(dòng)點(diǎn)EF同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)E,F出發(fā)t秒時(shí),△EBF的面積為.已知yt的函數(shù)圖像如圖2所示.其中曲線OM,NP為兩段拋物線,MN為線段.則下列說法:

①點(diǎn)E運(yùn)動(dòng)到點(diǎn)S時(shí),用了2.5秒,運(yùn)動(dòng)到點(diǎn)D時(shí)共用了4秒;

②矩形ABCD的兩鄰邊長為BC6cm,CD4cm;

sinABS;

④點(diǎn)E的運(yùn)動(dòng)速度為每秒2cm.其中正確的是( 。

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB10,點(diǎn)P是半圓O上的一個(gè)動(dòng)點(diǎn),則△PAB的面積最大值是 ;

(問題探究)如圖2所示,AB、AC是某新區(qū)的三條規(guī)劃路,其中AB6km,AC3km,∠BAC60°,所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F,即分別在、線段ABAC上選取點(diǎn)P、EF.由于總站工作人員每天要將物資在各物資站點(diǎn)間按PEFP的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EFFP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).可求得△PEF周長的最小值為 km;

(拓展應(yīng)用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB90°,OA12米,在圍墻OAOB上分別有兩個(gè)入口CD,且AC4米,DOB的中點(diǎn),出口E上.現(xiàn)準(zhǔn)備沿CE、DE從入口到出口鋪設(shè)兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.

①出口E設(shè)在距直線OB多遠(yuǎn)處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計(jì))

②已知鋪設(shè)小路CE所用的普通石材每米的造價(jià)是200元,鋪設(shè)小路DE所用的景觀石材每米的造價(jià)是400元.

請(qǐng)問:在上是否存在點(diǎn)E,使鋪設(shè)小路CEDE的總造價(jià)最低?若存在,求出最低總造價(jià)和出口E距直線OB的距離;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永農(nóng)化工廠以每噸800元的價(jià)格購進(jìn)一批化工原料,加工成化工產(chǎn)品進(jìn)行銷售,已知每1噸化工原料可以加工成化工產(chǎn)品0.8噸,該廠預(yù)計(jì)銷售化工產(chǎn)品不超過50噸時(shí)每噸售價(jià)為1600元,超過50噸時(shí),每超過1噸產(chǎn)品,銷售所有的化工產(chǎn)品每噸價(jià)格均會(huì)降低4元,設(shè)該化工廠生產(chǎn)并銷售了x噸化工產(chǎn)品.

1)用x的代數(shù)式表示該廠購進(jìn)化工原料  噸;

2)當(dāng)x50時(shí),設(shè)該廠銷售完化工產(chǎn)品的總利潤為y,求y關(guān)于x的函數(shù)關(guān)系式;

3)如果要求總利潤不低于38400元,那么該廠購進(jìn)化工原料的噸數(shù)應(yīng)該控制在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,關(guān)于x的方程a1x2+2bx+c1+x2)=0有兩個(gè)相等實(shí)根,且3ca+3b

1)試判斷△ABC的形狀;

2)求sinA+sinB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案