精英家教網 > 初中數學 > 題目詳情
如圖,點O是坐標原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,FB=FA.拋物線y=ax2+bx+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

【答案】分析:(1)由題意知OB=2OA=2n,在直角三角形AEO中,OF=OB-BF=-2n-AF,因此可用勾股定理求出AF的表達式,也就求出了FB的長,由于F的坐標為(0,m)據此可求出m,n的關系式,可用n替換掉一次函數中m的值,然后將A點的坐標代入即可求出k的值.
(2)思路同(1)一樣,先用n表示出E、F、G的坐標,然后代入拋物線的解析式中,得出a,b,c與n的函數關系式,然后用n表示出二次函數的解析式,進而可用n表示出H點的坐標,然后求出△AMH的面積和矩形AOBC的面積進行比較即可.
解答:解:(1)根據題意得到:E(3n,0),G(n,-n)
當x=0時,y=kx+m=m,
∴點F坐標為(0,m)
∵Rt△AOF中,AF2=m2+n2,
∵FB=AF,
∴m2+n2=(-2n-m)2,
化簡得:m=-0.75n,
對于y=kx+m,當x=n時,y=0,
∴0=kn-0.75n,
∴k=0.75.

(2)∵拋物線y=ax2+bx+c過點E、F、G,
,
解得:a=,b=-,c=-0.75n,
∴拋物線為y=x2-x-0.75n,
解方程組:,
得:x1=5n,y1=3n;x2=0,y2=-0.75n,
∴H坐標是:(5n,3n),HM=-3n,AM=n-5n=-4n,
∴△AMH的面積=0.5×HM×AM=6n2
而矩形AOBC的面積=2n2,
∴△AMH的面積:矩形AOBC的面積=3,不隨著點A的位置的改變而改變.
點評:命題立意:考查綜合應用一次函數、二次函數的圖象性質解決問題的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,點O是坐標原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,FB=FA.拋物線y=ax2+bx精英家教網+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•樊城區(qū)模擬)如圖,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H.
(1)求B、C兩點坐標;
(2)拋物線y=
16
x2-bx+c經過A、O兩點,求拋物線的解析式,并驗證點C是否在拋物線上;
(3)在x軸上是否存在一點P,使△PCM與△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H.
(1)求B、C兩點坐標;
(2)拋物線y=數學公式x2-bx+c經過A、O兩點,求拋物線的解析式,并驗證點C是否在拋物線上;
(3)在x軸上是否存在一點P,使△PCM與△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年湖北省宜昌市中考數學試卷(課標卷)(解析版) 題型:解答題

(2006•宜昌)如圖,點O是坐標原點,點A(n,0)是x軸上一動點(n<0).以AO為一邊作矩形AOBC,點C在第二象限,且OB=2OA.矩形AOBC繞點A逆時針旋轉90°得矩形AGDE.過點A的直線y=kx+m交y軸于點F,FB=FA.拋物線y=ax2+bx+c過點E、F、G且和直線AF交于點H,過點H作HM⊥x軸,垂足為點M.
(1)求k的值;
(2)點A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

同步練習冊答案