【題目】 如圖,在△ABC中,點(diǎn)D,E分別在邊AC,AB上,BDCE交于點(diǎn)O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC

1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC是等腰三角形?(用序號(hào)寫出所有成立的情形)

2)請(qǐng)選擇(1)中的一種情形,寫出證明過(guò)程.

【答案】(1①②;①③.(2)證明見(jiàn)解析.

【解析】試題分析:(1)由①②①③.兩個(gè)條件可以判定△ABC是等腰三角形,

2)先求出∠ABC=∠ACB,即可證明△ABC是等腰三角形.

試題解析:(1①②;①③

2)選①③證明如下,

∵OB=OC,

∴∠OBC=∠OCB,

∵∠EBO=∠DCO,

∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,

∴∠ABC=∠ACB

∴△ABC是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是一個(gè)兩位數(shù),b是一個(gè)三位數(shù).如果把這個(gè)兩位數(shù)放在這個(gè)三位數(shù)的前面,組成一個(gè)五位數(shù),則這個(gè)五位數(shù)可以表示為(

A. ab B. 100a+b C. 1000a+b D. a+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)等腰三角形一腰上的中線將這個(gè)等腰三角形的周長(zhǎng)分成15 cm和6 cm兩部分.求等腰三角形的底邊長(zhǎng).

(2)已知等腰三角形中,有一個(gè)角比另一個(gè)角的2倍少20°,求頂角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,.

(1)如圖1,若點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,求證:;

(2)如圖2,在(1)的條件下,若,求證:

(3)如圖3,若,點(diǎn)的延長(zhǎng)線上,則等式還能成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上表示整數(shù)的點(diǎn)稱為整點(diǎn),某數(shù)軸的單位長(zhǎng)度是1厘米,若在這個(gè)數(shù)軸上隨意畫(huà)一條15厘米的線段AB,則AB蓋住的整數(shù)點(diǎn)的個(gè)數(shù)共有( )個(gè)

A. 13或14個(gè) B. 14或15個(gè) C. 15或16個(gè) D. 16或17個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問(wèn)題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請(qǐng)猜想1+3+5+7+9+…+19=

(2)請(qǐng)猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計(jì)算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中, 的中點(diǎn),延長(zhǎng)到點(diǎn),使,連接,

)求證:

)若 , ,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式從左到右的變形為分解因式的是( )
A.m2-m-6=(m+2)(m-3)
B.(m+2)(m-3)=m2-m-6
C.x2+8x-9=(x+3)(x-3)+8x
D.18x3y2=3x3y2·6

查看答案和解析>>

同步練習(xí)冊(cè)答案