科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學 來源:2012年人教版八年級上第十一章全等三角形第二節(jié)全等三角形的判定練習卷(解析版) 題型:解答題
我們知道,兩邊及其中一邊的對角分別對應(yīng)相等的兩個三角形不一定全等. 那么在什么情況下,它們會全等?
(1)閱讀與證明:
對于這兩個三角形均為直角三角形,顯然它們?nèi)?
對于這兩個三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求證:△ABC≌△A1B1C1. (請你將下列證明過程補充完整)
證明:分別過點B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.
則∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
______________________________。
(2)歸納與敘述:
由(1)可得到一個正確結(jié)論,請你寫出這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
我們知道,兩邊及其中一邊的對角分別對應(yīng)相等的兩個三角形不一定全等.那么在什么情況下,它們會全等?
(1)閱讀與證明:
對于這兩個三角形均為直角三角形,顯然它們?nèi)龋?/p>
對于這兩個三角形均為鈍角三角形,可證它們?nèi)?證明略).
對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.
求證:△ABC≌△A1B1C1.(請你將下列證明過程補充完整)
證明:分別過點B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.則∠BDC=∠B1D1C1=900,
∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.
(2)歸納與敘述: 由(1)可得到一個正確結(jié)論,請你寫出這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
我們知道,兩邊及其中一邊的對角分別對應(yīng)相等的兩個三角形不一定全等. 那么在什么情況下,它們會全等?
(1)閱讀與證明:
對于這兩個三角形均為直角三角形,顯然它們?nèi)?
對于這兩個三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求證:△ABC≌△A1B1C1. (請你將下列證明過程補充完整)
證明:分別過點B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.
則∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
______________________________。
(2)歸納與敘述:
由(1)可得到一個正確結(jié)論,請你寫出這個結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com