【題目】“千年古都,大美西安”。某校數(shù)學(xué)興趣小組就“最想去的西安旅游景點”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,(景點對應(yīng)的名稱分別是:A:大雁塔 B:兵馬俑 C:陜西歷史博物館 D:秦嶺野生動物園 E:曲江海洋館)。下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:
請根據(jù)圖中提供的信息,解答下列問題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請估計“最想去景點B”的學(xué)生人數(shù)。
【答案】(1)40;(2)想去D景點的人數(shù)是8,圓心角度數(shù)是72°;(3)280.
【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);
(2)先計算出最想去D景點的人數(shù),再補(bǔ)全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù);
(3)用800乘以樣本中最想去B景點的人數(shù)所占的百分比即可.
(1)被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人);
(2)最想去D景點的人數(shù)為40-8-14-4-6=8(人),
補(bǔ)全條形統(tǒng)計圖為:
扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù)為×360°=72°;
(3)800×=280,
所以估計“醉美旅游景點B“的學(xué)生人數(shù)為280人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(5,0),點B的坐標(biāo)為(8,4),點C的坐標(biāo)為(3,4),連接AB、BC、OC
(1)求證四邊形OABC是菱形;
(2)直線l過點C且與y軸平行,將直線l沿x軸正方向平移,平移后的直線交x軸于點P.
①當(dāng)OP:PA=3:2時,求點P的坐標(biāo);
②點Q在直線1上,在直線l平移過程中,當(dāng)△COQ是等腰直角三角形時,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A
(1)當(dāng)a=時,求點A的坐標(biāo);
(2)過點A的直線y=x+k與二次函數(shù)的圖象相交于另一點B,當(dāng)b≥﹣1時,求點B的橫坐標(biāo)m的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的和點P,給出如下定義:如果在上存在一個動點Q,使得是以CQ為底的等腰三角形,且滿足底角,那么就稱點P為的“關(guān)聯(lián)點”.
當(dāng)的半徑為2時,
在點,,中,的“關(guān)聯(lián)點”是______;
如果點P在射線上,且P是的“關(guān)聯(lián)點”,求點P的橫坐標(biāo)m的取值范圍.
的圓心C在x軸上,半徑為4,直線與兩坐標(biāo)軸交于A和B,如果線段AB上的點都是的“關(guān)聯(lián)點”,直接寫出圓心C的橫坐標(biāo)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究
(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;
(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;
(3)李師傅準(zhǔn)備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值。
圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數(shù)、價價各幾何?“其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問:合伙人數(shù)、羊價各是多少?設(shè)合伙人數(shù)為人,羊價為錢,根據(jù)題意,可列方程組( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com