【題目】如圖,在平面直角坐標(biāo)系中,直線l1=k1x+b與反比例函數(shù)的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知點(diǎn)A的坐標(biāo)是(6,2)點(diǎn)B的縱坐標(biāo)是﹣3.
(1)求反比例函數(shù)和直線l1的表達(dá)式;
(2)根據(jù)圖象直接寫(xiě)出k1x+b>的解集;
(3)將直線l1:沿y軸向上平移后的直線l2與反比例函數(shù)在第一象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
【答案】(1)y=,y=x﹣1;(2)﹣4<x<0或x>6;(3)y=x+5.
【解析】
(1)將點(diǎn)A(6,2)代入,求出k2=12,得到反比例函數(shù)的表達(dá)式;將y=3代入,求出x,得到B點(diǎn)坐標(biāo),再將A,B兩點(diǎn)的坐標(biāo)代入l1=k1x+b,利用待定系數(shù)法求出直線l1的表達(dá)式;
(2)找出一次函數(shù)落在反比例函數(shù)圖象上方的部分對(duì)應(yīng)的自變量x的取值范圍即可;
(3)設(shè)直線l1與x軸交于點(diǎn)E,平移后的直線l2與x軸交于點(diǎn)D,連接AD,BD,依據(jù)CD∥AB,即可得出△ABC的面積與△ABD的面積相等,求得D(10,0),即可得出平移后的直線l2的函數(shù)表達(dá)式.
(1)∵反比例函數(shù)的圖象過(guò)點(diǎn)A(6,2),
∴k2=6×2=12,
∴反比例函數(shù)的表達(dá)式為y=,
∵反比例函數(shù)y=的圖象過(guò)點(diǎn)B,B的縱坐標(biāo)是﹣3,
∴y=﹣3時(shí),x=﹣4,
∴B(﹣4,﹣3).
∵直線l1=k1x+b過(guò)A,B兩點(diǎn),
∴,解得,
∴直線l1的表達(dá)式為y=x﹣1;
(2)根據(jù)圖象,可知當(dāng)﹣4<x<0或x>6時(shí),一次函數(shù)的圖象在反比例函數(shù)圖象的上方,
所以k1x+b>的解集為﹣4<x<0或x>6;
(3)如圖,設(shè)直線l1與x軸交于點(diǎn)E,平移后的直線l2與x軸交于點(diǎn)D,連接AD,BD,
∵CD∥AB,
∴△ABC的面積與△ABD的面積相等,
∵△ABC的面積為30,
∴S△ADE+S△BDE=30,即DE(|yA|+|yB|)=30,
∴×DE×5=30,
∴OD=12,
∵E(
∴D(﹣10,0),
設(shè)平移后的直線l2的函數(shù)表達(dá)式為y=x+n,
把D(﹣10,0)代入,可得0=×(﹣10)+n,
解得n=5,
∴平移后的直線l2的函數(shù)表達(dá)式為y=x+5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22時(shí),
教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).
(1)求教學(xué)樓AB的高度;
(2)學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin22≈,cos22≈,tan22≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展以素質(zhì)提升為主題的研學(xué)活動(dòng),推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.模擬駕駛;B.軍事競(jìng)技;C.家鄉(xiāng)導(dǎo)游;D.植物識(shí)別.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目.八年級(jí)(3)班班主任劉老師對(duì)全班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解決下列問(wèn)題:
(1)八年級(jí)(3)班學(xué)生總?cè)藬?shù)是 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)劉老師發(fā)現(xiàn)報(bào)名參加“植物識(shí)別”的學(xué)生中恰好有兩名男生,現(xiàn)準(zhǔn)備從這些學(xué)生中任意挑選兩名擔(dān)任活動(dòng)記錄員,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好選中1名男生和1名女生擔(dān)任活動(dòng)記錄員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是的中點(diǎn),延長(zhǎng)AD至點(diǎn)E,使得AB=BE.
(1)求證:△ACF∽△EBF;
(2)若BE=10,tanE=,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)的圖象,且與軸交點(diǎn)的橫坐標(biāo)分別為,,其中,,下列結(jié)論:①;②;③.正確的說(shuō)法有:______.(請(qǐng)寫(xiě)所有正確說(shuō)法的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知梯形中,∥,且,,。
⑴如圖,P為上的一點(diǎn),滿足∠BPC=∠A,求AP的長(zhǎng);
⑵如果點(diǎn)P在邊上移動(dòng)(點(diǎn)P與點(diǎn)不重合),且滿足∠BPE=∠A,交直線于點(diǎn)E,同時(shí)交直線DC于點(diǎn)。
①當(dāng)點(diǎn)在線段DC的延長(zhǎng)線上時(shí),設(shè),CQ=y,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
②寫(xiě)CE=1時(shí),寫(xiě)出AP的長(zhǎng)(不必寫(xiě)解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測(cè)站,A在B的正東方向,有一艘小船停在點(diǎn)P處,從A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測(cè)站之間的距離;
(2)小船從點(diǎn)P處沿射線AP的方向前行,求觀測(cè)站B與小船的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣(mài)出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣(mài)出5件,但每件售價(jià)不能高于55元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷(xiāo)售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤(rùn)恰好是2145元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com