【題目】在北京召開的國際數(shù)學(xué)家大會會標(biāo),它是有四個(gè)全等的小正方形拼成的一個(gè)大正方形(如圖所示),若大正方形的面積為13,小正方形的面積是1,較長的直角邊為a,較短的直角邊為b,則(a+b)2的值為( 。
A.13B.19C.25D.169
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有、、、四個(gè)點(diǎn),分別對應(yīng),,,四個(gè)數(shù),其中,,與互為相反數(shù),
(1)求,的值;
(2)若線段以每秒3個(gè)單位的速度,向右勻速運(yùn)動(dòng),當(dāng)_______時(shí),點(diǎn)與點(diǎn)重合,當(dāng)_______時(shí),點(diǎn)與點(diǎn)重合;
(3)若線段以每秒3個(gè)單位的速度向右勻速運(yùn)動(dòng)的同時(shí),線段以每秒2個(gè)單位的速度向左勻速運(yùn)動(dòng),則線段從開始運(yùn)動(dòng)到完全通過所需時(shí)間多少秒?
(4)在(3)的條件下,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),是否存在時(shí)間,使點(diǎn)與點(diǎn)的距離是點(diǎn)與點(diǎn)的距離的4倍?若存在,請求出值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)圓錐的母線長為5,圓錐的底面圓的半徑是2,則這個(gè)圓錐的側(cè)面展開圖扇形的圓心角是____ 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E是BD上一點(diǎn),AE的延長線交CD于F,交BC的延長線于G,M是FG的中點(diǎn).
(1)求證:① ∠1=∠2;② EC⊥MC.
(2)試問當(dāng)∠1等于多少度時(shí),△ECG為等腰三角形?請說明理由.
【答案】(1)①證明見解析;②證明見解析;(2)當(dāng)∠1=30°時(shí),△ECG為等腰三角形. 理由見解析.
【解析】試題分析:(1)①根據(jù)正方形的對角線平分一組對角可得然后利用邊角邊定理證明≌再根據(jù)全等三角形對應(yīng)角相等即可證明;
②根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得 再根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得然后據(jù)等邊對等角的性質(zhì)得到,所以 然后根據(jù)即可證明 從而得證;
(2)根據(jù)(1)的結(jié)論,結(jié)合等腰三角形兩底角相等 然后利用三角形的內(nèi)角和定理列式進(jìn)行計(jì)算即可求解.
試題解析:(1)證明:①∵四邊形ABCD是正方形,
∴∠ADE=∠CDE,AD=CD,
在△ADE與△CDE,
∴△ADE≌△CDE(SAS),
∴∠1=∠2,
②∵AD∥BG(正方形的對邊平行),
∴∠1=∠G,
∵M是FG的中點(diǎn),
∴MC=MG=MF,
∴∠G=∠MCG,
又∵∠1=∠2,
∴∠2=∠MCG,
∵
∴
∴EC⊥MC;
(2)當(dāng)∠1=30°時(shí), 為等腰三角形. 理由如下:
∵要使為等腰三角形,必有
∴span>
∵
∴
∴
∴∠1=30°.
【題型】解答題
【結(jié)束】
24
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O和點(diǎn)A,點(diǎn)B(2,3)是該拋物線對稱軸上一點(diǎn),過點(diǎn)B作BC∥x軸交拋物線于點(diǎn)C,連結(jié)BO、CA,若四邊形OACB是平行四邊形.
(1)① 直接寫出A、C兩點(diǎn)的坐標(biāo);② 求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)該拋物線的頂點(diǎn)為M,試在線段AC上找出這樣的點(diǎn)P,使得△PBM是以BM為底邊的等腰三角形并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)經(jīng)過點(diǎn)M的直線把□ OACB的面積分為1:3兩部分,求這條直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D在邊BC所在的直線上,過點(diǎn)D作DF∥AC交直線AB于點(diǎn)F,DE∥AB交直線AC于點(diǎn)E.
(1)當(dāng)點(diǎn)D在邊BC上時(shí),如圖①,求證:DE+DF=AC.
(2)當(dāng)點(diǎn)D在邊BC的延長線上時(shí),如圖②;當(dāng)點(diǎn)D在邊BC的反向延長線上時(shí),如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.
(3)若AC=6,DE=4,則DF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,C點(diǎn)表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.若點(diǎn)A與點(diǎn)B之間的距離表示為AB=|a﹣b|,點(diǎn)B與點(diǎn)C之間的距離表示為BC=|b﹣c|,點(diǎn)B在點(diǎn)A、C之間,且滿足BC=2AB.
(1)a= ,b= ,c= ;
(2)若點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時(shí),此時(shí)x= ,最小值為 .
(3)動(dòng)點(diǎn)M從A點(diǎn)位置出發(fā),沿?cái)?shù)軸以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)M運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)N從A點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿?cái)?shù)軸向C點(diǎn)運(yùn)動(dòng),N點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A.問:在點(diǎn)N開始運(yùn)動(dòng)后,M、N兩點(diǎn)之間的距離能否為2個(gè)單位?如果能,請求出運(yùn)動(dòng)的時(shí)間t的值以及此時(shí)對應(yīng)的M點(diǎn)所表示的數(shù):如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時(shí),寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)環(huán)境,節(jié)約資源,從今年6月1日起國家禁止超市、商場、藥店為顧客提供免費(fèi)塑料袋,為解決顧客購物包裝問題,心連心超市提供了A自帶購物袋;B租借購物籃;C購買環(huán)保袋;D徒手?jǐn)y帶,四種方式供顧客選擇.該超市把6月1日、2日兩天的統(tǒng)計(jì)結(jié)果繪成如圖的條形統(tǒng)計(jì)圖和6月1日的扇形統(tǒng)計(jì)圖,請你根據(jù)圖形解答下列問題:
(1)請將6月1日的扇形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)根據(jù)統(tǒng)計(jì)圖求6月1日在該超市購物總?cè)舜魏?/span>6月1日自帶購物袋的人次.
(3)比較兩日的條形圖,你有什么發(fā)現(xiàn)?請用一句話表述你的發(fā)現(xiàn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com