【題目】若方程(m+2)xm+3mx+1=0是關(guān)于x的一元二次方程,則( )
A.m=±2 B.m=﹣2 C.m=2 D.m≠±2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從點A出發(fā),沿直線每前進(jìn)20m后向左轉(zhuǎn)α,小明第一次回到出發(fā)點A一共走了100m,則α=________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的圖形的面積S是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)將△ABC沿y軸翻折,則翻折后點A的對應(yīng)點的坐標(biāo)是 .
(2)作出△ABC關(guān)于x軸對稱的圖形△A1B1C1,畫△A1B1C1,并直接寫出點A1的坐標(biāo).
(3)若以D、B、C為頂點的三角形與△ABC全等,請畫出所有符合條件的△DBC(點D與點A重合除外),并直接寫出點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是方程x2﹣2x﹣1=0的兩根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,則a的值等于( )
A.﹣5 B.5 C.﹣9 D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由二次函數(shù)y=﹣x2+2x可知( )
A.其圖象的開口向上
B.其圖象的對稱軸為x=1
C.其最大值為﹣1
D.其圖象的頂點坐標(biāo)為(﹣1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷不正確的是( )
A. 形狀相同的圖形是全等圖形 B. 能夠完全重合的兩個三角形全等
C. 全等圖形的形狀和大小都相同 D. 全等三角形的對應(yīng)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.
(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com