已知:在梯形ABCD中,AD∥BC,AD=2,BC=4,點(diǎn)M是AD的中點(diǎn),△MBC是正三角形.動(dòng)點(diǎn)P、Q分別在線段BC和MC上運(yùn)動(dòng),且∠MPQ=60°保持不變.
(1)求證:△BMP∽△CPQ;
(2)設(shè)PC=x,MQ=y,求y與x的函數(shù)關(guān)系式;
(3)在(2)中,當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說明理由.

【答案】分析:(1)根據(jù)等邊三角形的性質(zhì)和已知條件證明三角形相似即可;
(2)由△BMP∽△CQP,可得到BP與CQ的關(guān)系,從而轉(zhuǎn)化成y與x的函數(shù)關(guān)系式;
(3)先利用二次函數(shù)求最值,求出y取最小值時(shí)x的值和y的最小值,從而確定P、Q的位置,判斷出△PQC的形狀.
解答:證明:(1)在等邊△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,
∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°.
∴∠BMP=∠QPC.
∴△BMP∽△CQP;
(2)解:∵△BMP∽△CQP,
,
∵PC=x,MQ=y,
∴BP=4-x,QC=4-y,
,
∴y=x2-x+4;
(3)△PQC為直角三角形,
理由是:
∵y=(x-2)2+3,
∴當(dāng)y取最小值時(shí),x=PC=2.
∴P是BC的中點(diǎn),MP⊥BC而∠MPQ=60°.
∴∠CPQ=30°.
∴∠PQC=90°.
∴△PQC為直角三角形.
點(diǎn)評(píng):主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在梯形ABCD中,AD∥BC,點(diǎn)E在AB上,點(diǎn)F在DC上,且AD=a,BC=b.
(1)如果點(diǎn)E、F分別為AB、DC的中點(diǎn),如圖.求證:EF∥BC,且EF=
a+b
2
;
(2)如果
AE
EB
=
DF
EC
=
m
n
,如圖,判斷EF和BC是否平等,并用a、b、m、n的代數(shù)式表示EF.請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點(diǎn).
(1)如圖①,以EF為對(duì)稱軸翻折梯形ABCD,使點(diǎn)B與點(diǎn)D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
(2)如圖②,連接EF并延長(zhǎng)與DC的延長(zhǎng)線交于點(diǎn)G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關(guān)系寫出你的結(jié)論并證明之.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,點(diǎn)E在AB上,且AE:EB=2:3,過點(diǎn)E作EF∥BC交CD于F,求EF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
45
,點(diǎn)E是AB邊上一點(diǎn),BE=3,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),連接EP,作∠EPF,使得∠EPF=∠B,射線PF與AD邊交于點(diǎn)F,與CD的延長(zhǎng)線交于點(diǎn)G,設(shè)BP=x,DF=y.
(1)求BC的長(zhǎng);
(2)試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)連接EF,如果△PEF是等腰三角形,試求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,點(diǎn)E、F分別是BC和DC的中點(diǎn),連接AE、EF和BD,AE和BD相交于點(diǎn)G.
(1)求證:四邊形AECD是平行四邊形;
(2)求證:四邊形EFDG是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案