【題目】甲、乙兩個人做游戲:在一個不透明的口袋中裝有4張相同的紙牌,它們分別標有數(shù)字1,2,3,4.從中隨機摸出一張紙牌然后放回,再隨機摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.

【答案】解:根據(jù)題意列表如下:

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(3,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

所有等可能的情況數(shù)有16種,其中兩次摸出的紙牌上數(shù)字之和是3的倍數(shù)的情況有:(2,1),(1,2),(4,2),(3,3),(2,4),共5種,
∴P(甲獲勝)= ,P(乙獲勝)=1﹣ = ,
則該游戲不公平
【解析】列表得出所有等可能的情況數(shù),找出兩次摸出的紙牌上數(shù)字之和是3的倍數(shù)的情況數(shù),求出甲獲勝的概率,進而求出乙獲勝的概率,比較即可.
【考點精析】解答此題的關鍵在于理解列表法與樹狀圖法的相關知識,掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
束】
12

【題目】在平面直角坐標系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC是等邊三角形,D、E分別是BCAC上一點,且AE=CD,AD,AD、BE交于P,過BBQADQ,若QP=3cm,PE=1cm,AD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的5×5的方格紙中,每個小正方形的邊長為1,點A、B、C均為格點(格點是指每個小正方形的頂點).

(1)按下列要求畫圖:

標出格點D,使CD∥AB,并畫出線段CD;

標出格點E,使CE⊥AB,并畫出線段CE.

(2)CDCE的關系是 .

(3)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用圓規(guī)、直尺作圖,不寫作法,但到保留作圖痕跡.
已知:線段a,
求作:正方形ABCD,使其對角線AC=a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF= ,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,P是第一象限角平分線上的一點,且P點的橫坐標為3.把一塊三角板的直角頂點固定在點P處,將此三角板繞點P旋轉,在旋轉的過程中設一直角邊與x軸交于點E,另一直角邊與y軸交于點F,若POE為等腰三角形,則點F的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,CF∥BD,DF∥BE,若BE=BD,則∠CDF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形。

(1)拼成的大正方形的面積與邊長分別是多少?

(2)你能在下圖3×3方格中,連接四個格點組成面積為5的正方形嗎?

(3)能把十個小正方形組成的圖形紙,剪開并拼成更大的正方形嗎?若能,在下圖中畫出圖形,并求出它的邊長是多少?

查看答案和解析>>

同步練習冊答案