【題目】如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.
【答案】1
【解析】
根據等邊三角形的性質可得OC=AC,∠ABD=30°,根據“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據直角三角形的性質可求OE的最小值.
解:∵△ABC的等邊三角形,點O是AC的中點,
∴OC=AC,∠ABD=30°
∵△ABC和△ADE均為等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,且AB=AC,AD=AE,
∴△ABD≌△ACE(SAS)
∴∠ACE=30°=∠ABD
當OE⊥EC時,OE的長度最小,
∵∠OEC=90°,∠ACE=30°
∴OE最小值=OC=AB=1,
故答案為:1
科目:初中數學 來源: 題型:
【題目】如圖,菱形OABC的頂點A的坐標為(3,4),頂點C在x軸的正半軸上,反比例函數y=(x>0)的圖象經過頂點B,則反比例函數的表達式為( 。
A. y= B. y= C. y= D. y=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2,AC=2,求四邊形AODE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點C的坐標,并直接寫出y1<y2時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解下列方程
(1)(x﹣8)(x﹣1)=﹣12;
(2)3(x﹣5)2=2(5﹣x).
(3)y2-7y+6=0;
(4)2x2-4x-3=0;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017寧夏)在邊長為2的等邊三角形ABC中,P是BC邊上任意一點,過點 P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足.
(1)求證:不論點P在BC邊的何處時都有PM+PN的長恰好等于三角形ABC一邊上的高;
(2)當BP的長為何值時,四邊形AMPN的面積最大,并求出最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com