【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).

1)求證:AC=BD

2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.

【答案】1)證明見解析;(28﹣

【解析】

試題(1)過OOE⊥AB,根據(jù)垂徑定理得到AE=BECE=DE,從而得到AC=BD

2)由(1)可知,OE⊥ABOE⊥CD,連接OC,OA,再根據(jù)勾股定理求出CEAE的長,根據(jù)AC=AE﹣CE即可得出結論.

試題解析:解:(1)證明:如答圖,過點OOE⊥AB于點E,

∵AE=BECE=DE,

∴BE﹣DE=AE﹣CE,即AC=BD.

2)由(1)可知,OE⊥ABOE⊥CD,連接OCOA,

∵OA=10OC=8,OE=6,

.

∴AC=AE﹣CE=8﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(-1,4),B(-5,3),C(-3,2).

1)將△ABC向下平移6個單位后得到△A1B1C1,請在圖中畫出△A1B1C1,并寫出C1點坐標;

2)圖中點A212)與點A關于直線l成軸對稱,請在圖中畫出直線l△ABC關于直線l對稱的△A2B2C2,并寫出B2點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,牧童家在B處,A、B兩處相距河岸的距離ACBD分別為500m300m,CD兩處的距離為600m,天黑牧童從A處將牛牽到河邊去飲水,在趕回家,那么牧童最少要走( )

A.800mB.1000mC.1200mD.1500m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為支援災區(qū)建設,計劃向兩受災地運送急需物資分別為60噸和140噸,該市甲、乙兩地有急需物資分別為120噸和80噸,已知甲、乙兩地運到、兩地的每噸物資的運費如表所示:

20/

15/

25/

24/

1)設甲地運到地的急需物資為噸,求總運費(元)關于(噸)的函數(shù)關系式,并寫出的取值范圍;

2)求最低總運費,并說明總運費最低時的運送方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長;

(3)O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點D,則S△ADC的值是( )

A. 10 B. 8 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:

1)畫出ABC關于x軸對稱的A1B1C1,并寫出點C1的坐標(    );

2)將ABC的三個頂點的橫、縱坐標都乘以﹣1,分別得到對應點A2,B2,C2,請畫出A2B2C2,并說明A1B1C1A2B2C2是否是軸對稱圖形,如果是,那么它們的對稱軸是什么?如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40kmB處;經(jīng)過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距kmC處.

(1)求該輪船航行的速度(保留精確結果);

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.

查看答案和解析>>

同步練習冊答案