【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(-1,4),B(-5,3),C(-3,2).
(1)將△ABC向下平移6個單位后得到△A1B1C1,請在圖中畫出△A1B1C1,并寫出C1點坐標;
(2)圖中點A2(1,2)與點A關于直線l成軸對稱,請在圖中畫出直線l及△ABC關于直線l對稱的△A2B2C2,并寫出B2點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,牧童家在B處,A、B兩處相距河岸的距離AC、BD分別為500m和300m,且C、D兩處的距離為600m,天黑牧童從A處將牛牽到河邊去飲水,在趕回家,那么牧童最少要走( )
A.800mB.1000mC.1200mD.1500m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為支援災區(qū)建設,計劃向、兩受災地運送急需物資分別為60噸和140噸,該市甲、乙兩地有急需物資分別為120噸和80噸,已知甲、乙兩地運到、兩地的每噸物資的運費如表所示:
甲 | 乙 | |
20元/噸 | 15元/噸 | |
25元/噸 | 24元/噸 |
(1)設甲地運到地的急需物資為噸,求總運費(元)關于(噸)的函數(shù)關系式,并寫出的取值范圍;
(2)求最低總運費,并說明總運費最低時的運送方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度數(shù);
(2)BE+CG的長;
(3)⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于點D,則S△ADC的值是( )
A. 10 B. 8 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,4),請解答下列問題:
(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點C1的坐標( , );
(2)將△ABC的三個頂點的橫、縱坐標都乘以﹣1,分別得到對應點A2,B2,C2,請畫出△A2B2C2,并說明△A1B1C1和△A2B2C2是否是軸對稱圖形,如果是,那么它們的對稱軸是什么?如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40km的B處;經(jīng)過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距km的C處.
(1)求該輪船航行的速度(保留精確結果);
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com