【題目】如圖,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°. 求:
(1)∠AOC的度數(shù);
(2)∠MON的度數(shù).
【答案】
(1)解:∵∠AOC=∠AOB+∠BOC,
又∠AOB=90°,∠BOC=30°,
∴∠AOC=120°
(2)解:∵OM平分∠AOC,
∴∠MOC= ∠AOC,
∵∠AOC=120°,
∴∠MOC=60°,
∵ON平分∠BOC,
∴∠NOC= ∠BOC,
∵∠BOC=30°,
∴∠NOC=15°,
∵∠MON=∠MOC﹣∠NOC,
∴∠MON=45°
【解析】(1)根據(jù)角的和差即可得到結(jié)論;(2)根據(jù)角平分線的定義得到∠MOC= ∠AOC,∠NOC= ∠BOC,于是得到結(jié)論.
【考點(diǎn)精析】掌握角的運(yùn)算是解答本題的根本,需要知道角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來(lái)表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2+x+2=0的根的情況是( 。
A.兩個(gè)相等的實(shí)數(shù)根B.兩個(gè)不相等的實(shí)數(shù)根
C.無(wú)實(shí)數(shù)根D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于兩個(gè)不相等的實(shí)數(shù)a、b , 我們規(guī)定符號(hào)Max{a , b}表示a、b中的較大值,如:Max{2,4}=4,按照這個(gè)規(guī)定,方程Max{x , ﹣x}= 的解為( ).
A.1﹣
B.2﹣
C.1+ 或1﹣
D.1+ 或﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,是對(duì)角線,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)450得到, 交于點(diǎn),連接交于點(diǎn),連接,則下列結(jié)論:
其中正確的結(jié)論是 .(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知八邊形ABCDEFGH中4個(gè)正方形的面積分別為25,144,48,121個(gè)平方單位,PR=13(單位),則該八邊形的面積= 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鼓勵(lì)居民節(jié)約用水,某市決定對(duì)居民用水收費(fèi)實(shí)行“階梯價(jià)”,即當(dāng)每月用水量不超過(guò)15噸時(shí)(包括15噸),采用基本價(jià)收費(fèi);當(dāng)每月用水量超過(guò)15噸時(shí),超過(guò)部分每噸采用市場(chǎng)價(jià)收費(fèi).小蘭家4、5月份的用水量及收費(fèi)情況如下表:
月份 | 用水量(噸) | 水費(fèi)(元) |
4 | 22 | 51 |
5 | 20 | 45 |
(1)求該市每噸水的基本價(jià)和市場(chǎng)價(jià).
(2)設(shè)每月用水量為n噸,應(yīng)繳水費(fèi)為m元,請(qǐng)寫(xiě)出m與n之間的函數(shù)關(guān)系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費(fèi)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com