如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圓O的直徑DE=12cm,矩形DEFG的寬EF=6cm,矩形量角器以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在BC所在的直線上,設(shè)運(yùn)動(dòng)時(shí)間為x(s),矩形量角器和△ABC的重疊部分的面積為S(cm2).當(dāng)x=0(s)時(shí),點(diǎn)E與點(diǎn)C重合.(圖(3)、圖(4)、圖(5)供操作用).
(1)當(dāng)x=3時(shí),如圖(2),S=______cm2,當(dāng)x=6時(shí),S=______cm2,當(dāng)x=9時(shí),S=______cm2;
(2)當(dāng)3<x<6時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)6<x<9時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(4)當(dāng)x為何值時(shí),△ABC的斜邊所在的直線與半圓O所在的圓相切?

解:(1)36,54,18

(2)如圖,設(shè)矩形DEFG與斜邊AB的交點(diǎn)分別為N、H,與直角邊AC的交點(diǎn)為M;
∵BE=12-2x,AM=12-6=6,
∴S=S△ABC-S△AMN-S△BHE=×12×12-×6×6-×(12-2x)2=-2x2+24x-18,
∴當(dāng)3<x<6時(shí),S=-2x2+24x-18.

(3)如圖,

設(shè)矩形DEFG與斜邊AB的交點(diǎn)為M,延長(zhǎng)FG交AC于點(diǎn)H;
∵AH=12-6=6,HG=2x-12,
∴S=S△ABC-S△AHM-S矩形HCDG=×12×12-×6×6-×6×(2x-12)=-12x+126,
∴當(dāng)6<x<9時(shí),S=-12x+126.

(4)如圖,
①過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,由題意得OD=6;
∵∠ABC=45°,∠ODB=90°,
∴OB==6,
∴x1=(秒);
②過(guò)點(diǎn)O作OE⊥AB,交AB的延長(zhǎng)線于點(diǎn)E,由題意得OE=6;
∵∠OBE=45°,∠OEB=90°,
∴OB==6,
∴x2=,(秒)
故當(dāng)x等于(9-)秒或(9+)秒時(shí),△ABC的斜邊所在的直線與半圓O所在的圓相切.
分析:當(dāng)3<x<6時(shí),重疊部分是不規(guī)則的四邊形,不能直接用x表示,要采用面積的分割法來(lái)求,先求S△ABC,S△AMN,再求S△BEH,然后求重疊部分的面積;當(dāng)6<x<9時(shí),重疊部分也是不規(guī)則的四邊形,也采用面積的分割法來(lái)求,先求S△ABC,S△AHM,再
求S四邊形HGDC,這樣才能求出S與x的函數(shù)關(guān)系式
點(diǎn)評(píng):此題用運(yùn)動(dòng)的知識(shí),把求函數(shù)關(guān)系式與三角形的有關(guān)知識(shí)有機(jī)結(jié)合起來(lái),綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.點(diǎn)O以2cm/s的速度在直線BC上從左向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t=0s時(shí),點(diǎn)O在△ABC的左側(cè),OC=5cm.以點(diǎn)O為圓心、
12
t
cm長(zhǎng)度為半徑r的半圓O與直線BC交于D、E兩點(diǎn)
(1)當(dāng)t為何值時(shí),△ABC的一邊所在直線與半圓O所在的圓相切?
(2)當(dāng)△ABC的一邊所在直線與半圓O所在的圓相切時(shí),如果半圓O與直線DE圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圓O的直徑DE=12cm,矩形DEFG的寬EF=6cm,矩形量角器以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在BC所在的直線上,設(shè)運(yùn)動(dòng)時(shí)間為x(s),矩形量角器和△ABC的重疊部分的面積為S(cm2).當(dāng)x=0(s)時(shí),點(diǎn)E與點(diǎn)C重合.(圖(3)、圖(4)、圖(5)供操作用).
(1)當(dāng)x=3時(shí),如圖(2),S=
 
cm2,當(dāng)x=6時(shí),S=
 
cm2,當(dāng)x=9時(shí),S=
 
cm2;
(2)當(dāng)3<x<6時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)6<x<9時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(4)當(dāng)x為何值時(shí),△ABC的斜邊所在的直線與半圓O所在的圓相切?
精英家教網(wǎng)精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北恩施自治州初中畢業(yè)、升學(xué)考試數(shù)學(xué)試卷 題型:044

如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12 cm,形如矩形量角器的半圓O的直徑DE=12 cm,矩形DEFG的寬EF=6 cm,矩形量角器以2 cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在BC所在的直線上,設(shè)運(yùn)動(dòng)時(shí)間為x(s),矩形量角器和△ABC的重疊部分的面積為S(cm2).當(dāng)x=0(s)時(shí),點(diǎn)E與點(diǎn)C重合.(圖(3)、圖(4)、圖(5)供操作用).

(1)當(dāng)x=3時(shí),如圖(2),S________cm2,

當(dāng)x=6時(shí),S________cm2,

當(dāng)x=9時(shí),S________cm2;

(2)當(dāng)3<x<6時(shí),求S關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)6<x<9時(shí),求S關(guān)于x的函數(shù)關(guān)系式;

(4)當(dāng)x為何值時(shí),△ABC的斜邊所在的直線與半圓O所在的圓相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.點(diǎn)O以2cm/s的速度在直線BC上從左向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t=0s時(shí),點(diǎn)O在△ABC的左側(cè),OC=5cm.以點(diǎn)O為圓心、數(shù)學(xué)公式cm長(zhǎng)度為半徑r的半圓O與直線BC交于D、E兩點(diǎn)
(1)當(dāng)t為何值時(shí),△ABC的一邊所在直線與半圓O所在的圓相切?
(2)當(dāng)△ABC的一邊所在直線與半圓O所在的圓相切時(shí),如果半圓O與直線DE圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》中考題集(48):3.5 直線和圓的位置關(guān)系(解析版) 題型:解答題

如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圓O的直徑DE=12cm,矩形DEFG的寬EF=6cm,矩形量角器以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在BC所在的直線上,設(shè)運(yùn)動(dòng)時(shí)間為x(s),矩形量角器和△ABC的重疊部分的面積為S(cm2).當(dāng)x=0(s)時(shí),點(diǎn)E與點(diǎn)C重合.(圖(3)、圖(4)、圖(5)供操作用).
(1)當(dāng)x=3時(shí),如圖(2),S=______cm2,當(dāng)x=6時(shí),S=______cm2,當(dāng)x=9時(shí),S=______cm2
(2)當(dāng)3<x<6時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)6<x<9時(shí),求S關(guān)于x的函數(shù)關(guān)系式;
(4)當(dāng)x為何值時(shí),△ABC的斜邊所在的直線與半圓O所在的圓相切?


查看答案和解析>>

同步練習(xí)冊(cè)答案