如圖,在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠AOD=120°,AB=1,則AC=______;AD=______.
∵ABCD是矩形,
∴OA=OB.
∵∠AOD=120°,
∴∠AOB=60°.
∴△AOB為等邊三角形.
∵AC=BD,
∴AO=BO=AB=1.
∴AC=2AO=2.
∵AC=2,DC=AB=1,
∴AD2=AC2-DC2=4-1=3.
∴AD=
3

故答案為2,
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AC與BD相交于一點(diǎn)O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的對(duì)角線AC、BC相交于點(diǎn)O,BEAC,CEDB.求證:四邊形OBEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知關(guān)于x的方程x2-(k+1)x+
1
4
k2+1=0
的兩根是一個(gè)矩形兩條鄰邊的長,那么當(dāng)k=______時(shí),矩形的對(duì)角線長為
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)O是AC邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MNBC.設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F,連接AE、AF.那么當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)矩形的兩條對(duì)角線的夾角為60°,且對(duì)角線的長度為8cm,則較短邊的長度為(  )
A.8cmB.6cmC.4cmD.2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點(diǎn)P在矩形上方,點(diǎn)Q在矩形內(nèi)
(1)求∠PCQ的度數(shù);
(2)求證:∠APB=∠QPC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以△ABC的三邊為邊在BC的同一側(cè)分別作三個(gè)等邊三角形,即△ABD、△BCE、△ACF

(1)證明四邊形ADEF是平行四邊形.
(2)當(dāng)△ABC滿足條件______時(shí),四邊形ADEF為矩形.
(3)當(dāng)△ABC滿足條件______時(shí),四邊形ADEF不存在.
(4)當(dāng)△ABC滿足條件______時(shí),四邊形ADEF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且ADBC,AD=BC,如果補(bǔ)上下列條件中的,可以使四邊形ABCD為矩形(  )
A.AC⊥BDB.AB=ADC.AB=CDD.AC=BD

查看答案和解析>>

同步練習(xí)冊(cè)答案