【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交BC于點E,過點A作直線CD的垂線交CD于點F,若,則的值為______

【答案】

【解析】分析:根據(jù)平行四邊形面積求出AEAF,然后根據(jù)題意畫出圖形:有兩種情況,求出BE、DF的值,求出CECF的值,繼而求得出答案.

詳解:∵四邊形ABCD是平行四邊形, ∴AB=CD=4,BC=AD=6,

①如圖:

∵SABCD=BCAE=CDAF=12, ∴AE=2,AF=3,

Rt△ABE中:BE=2,Rt△ADF中,DF=3, ∴CE+CF=BC-BE+DF-CD=2+;

②如圖:

∵SABCD=BCAE=CDAF=12, ∴AE=2,AF=3,

Rt△ABE中:BE=2,在Rt△ADF中,DF=3, ∴CE+CF=BC+BE+DF+CD=10+5,

綜上可得:CE+CF的值為10+52+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )

A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC=BD時,它是正方形

C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC⊥BD時,它是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)當(dāng)運動3秒時,點MN、P分別表示的數(shù)是 、 、 ;

2)求運動多少秒時,點P到點M、N的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).

(1)若多項式的值與字母x的取值無關(guān),求a、b的值.

(2)在(1)的條件下,先化簡多項式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.

(3)在(1)的條件下,求(b+a2+(2b+a2+(3b+a2++(9b+a2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。

該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖和圖中發(fā)現(xiàn)的結(jié)論選擇其一說明理由。

試探究圖中BN、CN、CM、DN這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由。

將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉(zhuǎn)到圖,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關(guān)系(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】世界杯比賽中,根據(jù)場上攻守形勢,守門員會在門前來回跑動,如果以球門線為基準,向前跑記作正數(shù),返回則記作負數(shù),一段時間內(nèi),某守門員的跑動情況記錄如下(單位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定開始計時時,守門員正好在球門線上)

(1)守門員最后是否回到球門線上?

(2)守門員離開球門線的最遠距離達多少米?

(3)如果守門員離開球門線的距離超過10米(不包括10米),則對方球員挑射極可能造成破門.請問在這一時間段內(nèi),對方球員有幾次挑射破門的機會?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算.

(1). . (2).

(3). (4).

(5). (6).

(7). .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點,過點P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A—C—B運動,點Q從點A出發(fā)以a(cm/s)的速度沿AB運動,P,Q兩點同時出發(fā),當(dāng)某一點運動到點B時,兩點同時停止運動.設(shè)運動時間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1 , C2兩段組成,如圖2所示.

(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達式;
(3)當(dāng)點P運動到線段BC上某一段時△APQ的面積,大于當(dāng)點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案