【題目】已知中,,.將繞點逆時針旋轉(zhuǎn)后得到,其中點運(yùn)動的路徑為.那么圖中陰影部分的面積是____

【答案】

【解析】

根據(jù)直角三角形的性質(zhì)得到∠CAB60,AB2AC2,求得BC,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AC′=AC1,AB′=AB2BC′=BC,∠BAB30,∠CAB′=∠CAB60,在RtACD中求得CDAC′=1,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.

∵∠C90,∠ABC30AC=1

∴∠CAB60,AB2AC2

BC,

RtABC繞點A逆時針旋轉(zhuǎn)15后得到△ABC′,

AC′=AC1AB′=AB2,BC′=BC,∠BAB15,∠CAB′=∠CAB60

∴∠CAD=∠CAB′-∠BAB′=45,

RtACD中,∵∠CAD45,

CDAC′=1,

BDBCCD1

∴圖中陰影部分的面積=S扇形BABSADB

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】餃子又名交子或者嬌耳,是新舊交替之意,它是重慶人民的年夜飯必吃的一道美食.今年除夕,小僑跟著媽媽一起包餃子準(zhǔn)備年夜飯,體驗濃濃的團(tuán)圓氣氛.已知小僑家共10人,平均每人吃10個餃子,計劃用10分鐘將餃子包完.

1)若媽媽每分鐘包餃子的速度是小僑速度的2倍少2個,那么小僑每分鐘至少要包多少個餃子?

2)小僑以(1)問中的最低速度,和媽媽同時開始包餃子,媽媽包餃子的速度在(1)問的最低速度基礎(chǔ)上提升了a%,在包餃子的過程中小僑外出耽誤了分鐘,返家后,小僑與媽媽一起包完剩下的餃子,所用時間比原計劃少了a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、點B的坐標(biāo)分別為(4,0)、(0,3),將線段BA繞點A沿順時針旋轉(zhuǎn)90°,設(shè)點B旋轉(zhuǎn)后的對應(yīng)點是點B1,求點B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.拋物線經(jīng)過點在拋物線上,且在軸的上方,點的橫坐標(biāo)記為

1)求拋物線的解析式:

2)如圖2.過點軸的平行線交直線于點.交軸于點,若平分,求的值:

3)點在直線上.點軸上,且位于點的上方,那么在拋物線上是否存在點,使得以點為頂點的四邊形是菱形?若存在,請直接寫出菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,EBC的中點,過點EEFAB于點F,延長DC,交FE的延長線于點G,連結(jié)DF,已知∠FDG=45°

(1)求證:GD=GF.

(2)已知BC=10, .求 CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx分別與雙曲線yy交于第一象限內(nèi)的點AB,且OA2AB,將直線yx向左平移4個單位后,分別與x軸,y軸交于點D、E,與雙曲線y交于點COBC的面積為3

1)求m,n的值;

2)點C到直線AB的距離是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.

1)求該拋物線的解析式;

2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;

3)點在拋物線的對稱軸上,與直線軸都相切,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支持國家南水北調(diào)工程建設(shè),小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調(diào)查得知,當(dāng)種植櫻桃的面積x不超過15畝時,每畝可獲得利潤y1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)

x(畝)

20

25

30

35

y(元)

1800

1700

1600

1500

1)請求出種植櫻桃的面積超過15畝時每畝獲得利潤yx的函數(shù)關(guān)系式;

2)如果小王家計劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設(shè)小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計了如圖甲和乙的兩種方案:

方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.

1)若a=6

①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?

②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?

2)若0a6.5,哪種方案能圍成面積最大的矩形花圃?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案