先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點,DE∥BC交AC于點E,那么E也是AC的中點,及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點且EF∥AD∥BC.那么F也是CD的中點,及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動,使點C在直線一側(cè),A、B、D三點在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對結(jié)論進行猜想,然后加以證明.

【答案】分析:首先根據(jù)題目提供的正確的結(jié)論得到正確的信息,然后根據(jù)加工的正確的信息進行應(yīng)用及探究的證明.
解答:證明圖丙:連接AC,BD交于O,過O作OOˊ⊥MN垂足為Oˊ…(1分)
由正確結(jié)論1知OOˊ同為梯形BBˊDˊD與梯形AAˊCˊC的中位線
得AA′+CC′=BB′+DD′…(4分)

圖丁有關(guān)系:AA′=BB′+CC′+DD′…(5分)
證明:連接AC,BD交于O,過O作OOˊ⊥MN垂足為Oˊ,延長OOˊ交AˊC于Oˊˊ
由正確結(jié)論1知OOˊ為梯形BBˊDˊD的中位線…(6分)
得2 OOˊ=BB′+DD′…(7分)
由正確結(jié)論2知OOˊˊ為△AA′C的中位線
得AA′=2 OOˊˊ    …(8分)
OˊOˊˊ又為△A′CC′的中位線
得CC′=2 OˊOˊˊ  …(9分)
∴AA′=2 OOˊˊ=2 OOˊ+2 OˊOˊˊ=BB′+DD′+CC′(10分)
點評:本題考查了梯形的中位線定理及三角形的中位線定理的知識,解決本題的關(guān)鍵是正確的構(gòu)造輔助線.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

29、先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點,DE∥BC交AC于點E,那么E也是AC的中點,及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點且EF∥AD∥BC.那么F也是CD的中點,及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動,使點C在直線一側(cè),A、B、D三點在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對結(jié)論進行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•湛江)先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2-4>0
解:∵x2-4=(x+2)(x-2)
∴x2-4>0可化為
(x+2)(x-2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
x+2>0
x-2>0
 
x+2<0
x-2<0

解不等式組①,得x>2,
解不等式組②,得x<-2,
∴(x+2)(x-2)>0的解集為x>2或x<-2,
即一元二次不等式x2-4>0的解集為x>2或x<-2.
(1)一元二次不等式x2-16>0的解集為
x>4或x<-4
x>4或x<-4
;
(2)分式不等式
x-1
x-3
>0
的解集為
x>3或x<1
x>3或x<1
;
(3)解一元二次不等式2x2-3x<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)反比例函數(shù)y=
mx
(m≠0)與一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,請寫出兩條正確的結(jié)論
 
;②
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點,DE∥BC交AC于點E,那么E也是AC的中點,及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點且EF∥AD∥BC.那么F也是CD的中點,及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動,使點C在直線一側(cè),A、B、D三點在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對結(jié)論進行猜想,然后加以證明.

查看答案和解析>>

同步練習冊答案