【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.
(1)如圖1,已知四邊形在正方形網(wǎng)格中,頂點(diǎn)都在格點(diǎn)上,判斷:四邊形______(填“是”或“不是”)以為“相似對(duì)角線”的四邊形;
(2)如圖,在四邊形中,,,對(duì)角線平分.求證:是四邊形的“相似對(duì)角線”;
(3)如圖,已知是四邊形的“相似對(duì)角線”,.連接,若的面積為,求的長(zhǎng).
【答案】(1)是;(2)見解析;(3)4.
【解析】
(1)先根據(jù)勾股定理計(jì)算出AB,BC的長(zhǎng),再得出,結(jié)合∠ABC=∠ACD=90°,可得出△ABC∽△ACD,從而可得出結(jié)果;
(2)先判斷出∠A+∠ADB=140°=∠ADC,從而可得出∠A=∠BDC,證明△ABD∽△DBC即可得出結(jié)論;
(3)由已知可知△FEH∽△FHG,得出FH2=FEFG;過(guò)點(diǎn)E作EQ⊥FG于Q,繼而得出EQ=FE,再結(jié)合的面積為求出FGFE=16,從而可得出結(jié)論.
(1)解:根據(jù)勾股定理得,
AB=,BC=,
又AC=5,∴AB2+BC2=AC2,∴∠ABC=90°=∠ACD,
∴,
∴,
∴△ABC∽△ACD,
∴四邊形ABCD是以AC為“相似對(duì)角線”的四邊形.
故答案為:是;
(2)證明:如圖2中,
∵∠ABC=80°,BD平分∠ABC,
∴∠ABD=∠DBC=40°,
∴∠A+∠ADB=140°
∵∠ADC=140°,
∴∠BDC+∠ADB=140°,
∴∠A=∠BDC,
∴△ABD∽△DBC,
∴BD是四邊形ABCD的“相似對(duì)角線”;
(3)解:如圖3,
∵FH是四邊形EFGH的“相似對(duì)角線”,
∴△EFH與△HFG相似,
∵∠EFH=∠HFG,
∴△FEH∽△FHG,,
∴FH2=FEFG,
過(guò)點(diǎn)E作EQ⊥FG于Q,
∵=30°,∴∠EFG=60°,
∴EQ=FEsin60°=FE,
,
∴,
∴FGFE=16,
∴FH2=FEFG=16,
∴FH=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步普及足球知識(shí),傳播足球文化,某市在中小學(xué)舉行了“足球在身邊”知識(shí)競(jìng)賽活動(dòng),各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:
(1)獲得一等獎(jiǎng)的學(xué)生有 人;
(2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D 四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了調(diào)查學(xué)生預(yù)防“新型冠狀病毒”知識(shí)的情況,在全校隨機(jī)抽取了一部分學(xué)生進(jìn)行民意調(diào)查,調(diào)查結(jié)果分為A.B.C三個(gè)等級(jí),其中A:非常了解,B:了解,C:不了解,并根據(jù)調(diào)查結(jié)果繪制了如下兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)這次抽查的學(xué)生為 人;
(2)求等級(jí)A在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該校有學(xué)生2200人,請(qǐng)根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該校約有多少學(xué)生對(duì)預(yù)防新型冠狀病毒知識(shí)已經(jīng)了解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,為矩形邊上的一點(diǎn),點(diǎn)從點(diǎn)沿折運(yùn)動(dòng)到點(diǎn)時(shí)停止,點(diǎn)從點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是.若點(diǎn),同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,的面積為.已知與的函數(shù)關(guān)系圖象如圖②所示,則下列結(jié)論錯(cuò)誤的是( )
A.B.
C.當(dāng)時(shí),D.當(dāng)時(shí),是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市某特產(chǎn)專賣店銷售一種蜜棗,每千克的進(jìn)價(jià)為10元,銷售過(guò)程中發(fā)現(xiàn),每天銷量與銷售單價(jià)x(元)之間關(guān)系可以近似地看作一次函數(shù).(利潤(rùn)=售價(jià)-進(jìn)價(jià))
(1)寫出每天的利潤(rùn)w(元)與銷售單價(jià)x(元)之間函數(shù)解析式;
(2)當(dāng)銷售單價(jià)定為多少元時(shí),這種蜜棗每天能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
(3)物價(jià)部門規(guī)定,這種蜜棗的銷售單價(jià)不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤(rùn),則銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郴州市正在創(chuàng)建“全國(guó)文明城市”,某校擬舉辦“創(chuàng)文知識(shí)”搶答賽,欲購(gòu)買A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買A種20件,B種15件,共需380元;如果購(gòu)買A種15件,B種10件,共需280元.
(1)A、B兩種獎(jiǎng)品每件各多少元?
(2)現(xiàn)要購(gòu)買A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為“創(chuàng)建文明城市,構(gòu)建和諧社會(huì)”,更好的提高垃圾分類意識(shí),某小區(qū)決定安裝垃圾分類的溫馨提示牌和垃圾箱,若購(gòu)買3個(gè)溫馨提示牌和4個(gè)垃圾箱共需580元,購(gòu)買5個(gè)溫馨提示牌和2個(gè)垃圾箱共需500元.
(1)購(gòu)買1個(gè)溫馨提示牌和1個(gè)垃圾箱各需多少元?
(2)如果需要購(gòu)買溫馨提示牌和垃圾箱共100個(gè),費(fèi)用不超過(guò)8000元,問(wèn):最多購(gòu)買垃圾箱多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明,小亮都想去觀看電影,但是只有一張電影票,他們決定采取抽卡片的辦法確定誰(shuí)去,規(guī)定如下:將正面分別標(biāo)有數(shù)字,,的三張卡片(除數(shù)字外其余都同)洗勻后背面朝上放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回,重新洗勻后背面朝上放置在桌面上,再隨機(jī)抽出一張記下數(shù)字,如果兩個(gè)數(shù)字的積為奇數(shù),則小明去;如果兩個(gè)數(shù)字的積為偶數(shù),則小亮去.
(1)請(qǐng)用列表或樹狀圖的方法表示抽出的兩張卡片上的數(shù)字積的所有可能出現(xiàn)的結(jié)果;
(2)你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點(diǎn)E,過(guò)E作EF⊥AD于F.
(1)求證:四邊形ABEF是正方形;
(2)連接BF交AE于點(diǎn)O,連接DO,若CD=2,CE=1,求OD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com