【題目】如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.

下列判斷: 當(dāng)x>2時,M=y2;

當(dāng)x<0時,x值越大,M值越大;

使得M大于4的x值不存在;

若M=2,則x= 1 .

其中正確的有

A.1個 B.2個 C. 3個 D.4個

【答案】B

【解析】

試題當(dāng)y1=y2時,即時,解得:x=0或x=2,

由函數(shù)圖象可以得出當(dāng)x>2時, y2>y1;當(dāng)0<x<2時,y1>y2;當(dāng)x<0時, y2>y1∴①錯誤。

當(dāng)x<0時, -直線的值都隨x的增大而增大,

當(dāng)x<0時,x值越大,M值越大∴②正確。

拋物線的最大值為4,M大于4的x值不存在。∴③正確;

當(dāng)0<x<2時,y1>y2,當(dāng)M=2,2x=2,x=1;

當(dāng)x>2時,y2>y1,當(dāng)M=2時,,解得(舍去)

使得M=2的x值是1或。∴④錯誤。

綜上所述,正確的有2個。故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),Bb0),C(-12),且+(a+2b-4)2=0.

1)求a,b的值.

2)在y軸的正半軸上存在一點M,使SCOM=SABC,求出點M的坐標(biāo).

3)在坐標(biāo)軸的其他位置是否有在點M,使SCOM=SABC仍成立?若存在,請直 接寫出符合條件的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分)某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達(dá)點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)經(jīng)過ABCD的頂點B、D,點A的坐標(biāo)為(0,﹣1),ABx軸,CD經(jīng)過點(0,2),ABCD的面積是18,則點D的坐標(biāo)是( 。

A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,AB=AC,AC的垂直平分線與AB所在直線相交所得的銳角為40°,∠C=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0)、C(2,3)兩點,與y軸交于點N,其頂點為D.

(1)求拋物線及直線AC的函數(shù)關(guān)系式;

(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);

(3)設(shè)點M(3,n),求使MN+MD取最小值時n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.

(1)如圖1,AE平分∠CABBCE,交CDF,若DF=2,求AC的長;

(2)將圖1中的△ADC繞點D順時針旋轉(zhuǎn)一定角度得到△ADN,如圖2,P,Q分別為線段AN,BC的中點,連接AC,BN,PQ,求證:BN=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABDRtACE如下3個圖擺放,其中ABAD,ACAE

1)如圖1,求證:BECD

2)如圖2MDE中點,求證:BC2AM

3)如圖3ABCE,AEBCAC,AB2,直接寫出四邊形BCED的面積.

查看答案和解析>>

同步練習(xí)冊答案