如圖,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,,求AB的值.

AB=

解析試題分析:由在△ABC中,∠ABC=2∠C,BD平分∠ABC,易證得△ABD∽△ACB,然后由相似三角形的對應(yīng)邊成比例,求得AB2=AD•AC,則可求得AB的值.
試題解析:∵在△ABC中,∠ABC=2∠C,BD平分∠ABC,
∴∠ABD=∠C=∠CBD,
∴CD=BD=2,
∴AC=AD+CD=+2=3,
∵∠A是公共角,
∴△ABD∽△ACB,
∴AD:AB=AB:AC,
∴AB2=AD•AC=×3=6,
∴AB=
考點:相似三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點C,且AB=BC,P是線段BC上異于兩端點的一點,過點P的直線分別交l2、l1于點D、E(點A、E位于點B的兩側(cè)),滿足BP=BE,連接AP、CE.
(1)求證:△ABP≌△CBE;
(2)連結(jié)AD、BD,BD與AP相交于點F.如圖2.
①當=2時,求證:AP⊥BD;
②當=n(n>1)時,設(shè)△PAD的面積為S1,△PCE的面積為S2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC中,∠ACB=90°,AC=BC,點E、F在AB上,∠ECF=45°.求證:△ACF∽△BEC;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在△中,,點在邊上,相交于點,且∠

求證:(1)△∽△;(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,DE∥BC,EF∥AB.證明:△ADE∽△EFC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

把兩個直角三角形如圖(1)放置,使∠ACB與∠DCE重合,AB與DE相交于點O,其中∠DCE=90°,∠BAC=45°,AB=6cm,CE="5cm," CD=10cm.
(1)圖1中線段AO的長=          cm;DO=         cm

圖1
(2)如圖2,把△DCE繞著點C逆時針旋轉(zhuǎn)α度(0°<α<90°)得△D1CE1,D1C與AB相交于點F,若△BCE1恰好是以BC為底邊的等腰三角形,求線段AF的長.
 
圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

四邊形ABCD中,點E是AB的中點,F是AD邊上的動點.連結(jié)DE、CF.
(1)若四邊形ABCD是矩形,AD=12,CD=10,如圖(1)所示.

①請直接寫出AE的長度;
②當DE⊥CF時,試求出CF長度.
(2)如圖(2),若四邊形ABCD是平行四邊形,DE與CF相交于點P.
探究:當∠B與∠PC滿足什么關(guān)系時,成立?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在矩形ABCD中,AB=10,BC=12,E為DC的中點,連接BE,作AF⊥BE,垂足為F.

(1)求證:△BEC∽△ABF;
(2)求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,∠CAB=90°,AD⊥BC于點D,點E為AB的中點,EC與AD交于點G,點F在BC上.

(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.

查看答案和解析>>

同步練習(xí)冊答案