【題目】將矩形ABCD折疊使A,C重合,折痕交BCE,交ADF,

1)求證:四邊形AECF為菱形;

2)若AB4,BC8

①求菱形的邊長(zhǎng);

②求折痕EF的長(zhǎng).

【答案】1)見解析;(2)①5;②2

【解析】

1)根據(jù)折疊的性質(zhì)得OAOC,EFAC,EAEC,再利用ADAC得到∠FAC=∠ECA,則可根據(jù)ASA判斷△AOF≌△COE,得到OFOE,加上OAOC,ACEF,于是可根據(jù)菱形的判定方法得到四邊形AECF為菱形;

2)①設(shè)菱形的邊長(zhǎng)為x,則BEBCCE8x,AEx,在RtABE中,根據(jù)勾股定理得(8x2+42x2,然后解方程即可得到菱形的邊長(zhǎng);

②先在RtABC中,利用勾股定理計(jì)算出AC4,則OAAC2,然后在RtAOE中,利用勾股定理計(jì)算出OE,所以EF2OE2

1)∵矩形ABCD折疊使A,C重合,折痕為EF

OAOC,EFAC,EAEC

ADAC,

∴∠FAC=∠ECA,在△AOF和△COE中,

∴△AOF≌△COE,

OFOE,

OAOCACEF,

∴四邊形AECF為菱形;

2)①設(shè)菱形的邊長(zhǎng)為x,則BEBCCE8x,AEx,

RtABE中,∵BE2+AB2AE2,

∴(8x2+42x2,解得x5,

即菱形的邊長(zhǎng)為5;

②在RtABC中,AC4,

OAAC2

RtAOE中,AE5,

OE,

EF2OE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A3,1),B1,0),PQ是直線y=x上的一條動(dòng)線段且PQ=QP的下方),當(dāng)AP+PQ+QB取最小值時(shí),點(diǎn)Q坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)在斜邊上,以為圓心,為半徑作圓,分別與,相交于點(diǎn),連結(jié),已知.

1)求證:的切線.

2)若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-1,0),B3,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求該拋物線的解析式;

(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m0m3),連接CD,BD,BCAC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;

(3)若點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸交于A(﹣4,0)、B(﹣l,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是第三象限的拋物線上一動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ACD的面積為量求出Sm的函數(shù)關(guān)系式,并確定m為何值時(shí)S有最大值,最大值是多少?

(3)若點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),是否存在點(diǎn)P使得∠APC=90°?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對(duì)角線BD上,折痕為BE,點(diǎn)C落在點(diǎn)C′處,若∠ADB=46°,則∠DBE的度數(shù)為   °.

(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.

(畫一畫)

如圖2,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點(diǎn)M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);

(算一算)

如圖3,點(diǎn)F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點(diǎn)A,B分別落在點(diǎn)A′,B′處,若AG=,求B′D的長(zhǎng);

(驗(yàn)一驗(yàn))

如圖4,點(diǎn)K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點(diǎn)A,B分別落在點(diǎn)A′,B′處,小明認(rèn)為B′I所在直線恰好經(jīng)過點(diǎn)D,他的判斷是否正確,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小董設(shè)計(jì)的作已知圓的內(nèi)接正三角形的尺規(guī)作圖過程.

已知:⊙O.

求作:⊙O的內(nèi)接正三角形.

作法:如圖,

①作直徑AB;

②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點(diǎn);

③連接AC,AD,CD.

所以△ACD就是所求的三角形.

根據(jù)小董設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:在⊙O中,連接OC,OD,BC,BD,

OC=OB=BC,

∴△OBC為等邊三角形(_______________)(填推理的依據(jù)).

∴∠BOC=60°.

∴∠AOC=180°-BOC=120°.

同理∠AOD=120°,

∴∠COD=AOC=AOD=120°.

AC=CD=AD(_______________)(填推理的依據(jù)).

∴△ACD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西省第十五屆運(yùn)動(dòng)會(huì)乒乓球比賽于2018813日上午在山西省體育博物館的比賽場(chǎng)館內(nèi)正式拉開了帷幕.第十五屆運(yùn)動(dòng)會(huì)競(jìng)技體育組乒乓球項(xiàng)目產(chǎn)生的決賽運(yùn)動(dòng)員名單中太原市共27人,其中甲組有甲、乙、丙、丁四名女子運(yùn)動(dòng)員,若進(jìn)行一次乒乓球單打比賽,要通過抽簽從中選出兩名運(yùn)動(dòng)員打第一場(chǎng)比賽.

1)若已確定甲打第一場(chǎng),再?gòu)钠溆嗳\(yùn)動(dòng)員中隨機(jī)選取一位,求恰好選中乙的概率;

2)若兩名運(yùn)動(dòng)員都不確定,請(qǐng)用樹狀圖法或列表法,求恰好選中甲、乙兩名運(yùn)動(dòng)員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,足球場(chǎng)上守門員在處開出一高球,球從離地面1米的處飛出(軸上),運(yùn)動(dòng)員乙在距點(diǎn)6米的處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點(diǎn),距地面約4米高,球落地后又一次彈起.據(jù)實(shí)驗(yàn)測(cè)算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.

1)求足球開始飛出到第一次落地時(shí),該拋物線的表達(dá)式.

2)足球第一次落地點(diǎn)距守門員多少米?(取

3)運(yùn)動(dòng)員乙要搶到第二個(gè)落點(diǎn),他應(yīng)再向前跑多少米?

(取

查看答案和解析>>

同步練習(xí)冊(cè)答案