【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C= ,BC=12,求AD的長.

【答案】
(1)證明:∵AD是BC上的高,

∴AD⊥BC,

∴∠ADB=90°,∠ADC=90°,

在Rt△ABD和Rt△ADC中,

∵tanB= ,cos∠DAC=

又∵tanB=cos∠DAC,

=

∴AC=BD.


(2)解:在Rt△ADC中,

故可設(shè)AD=12k,AC=13k,

∴CD= =5k,

∵BC=BD+CD,又AC=BD,

∴BC=13k+5k=18k

由已知BC=12,

∴18k=12,

∴k=

∴AD=12k=12× =8.


【解析】(1)由于tanB=cos∠DAC,所以根據(jù)正切和余弦的概念證明AC=BD;(2)設(shè)AD=12k,AC=13k,然后利用題目已知條件即可解直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是ABCD邊AB上的一點(diǎn),射線CP交DA的延長線于點(diǎn)E,請從圖中找出一對相似三角形:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(1,0)、B(7,0),⊙A、⊙B的半徑分別為1和2,將⊙A沿x軸向右平移3個單位,則此時該圓與⊙B的位置關(guān)系是(
A.外切
B.相交
C.內(nèi)含
D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“初中生騎電動車上學(xué)”的現(xiàn)象越來越受到社會的關(guān)注,某校利用“五一”假期,隨機(jī)抽查了本校若干名學(xué)生和部分家長對“初中生騎電動車上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理制作了如下的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次抽查的家長總?cè)藬?shù)為為多少;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一個學(xué)生恰好抽到持“無所謂”態(tài)度的概率是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC=4,D為BC的中點(diǎn),在AC邊上存在一點(diǎn)E,連接ED,EB,則△BDE周長的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長為2的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為( )

A.(1,
B.(﹣1,2)
C.(﹣1,
D.(﹣1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)初二年級抽取部分學(xué)生進(jìn)行跳繩測試.并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳9099次的為及格;每分鐘跳100109次的為中等;每分鐘跳110119次的為良好;每分鐘跳120次及以上的為優(yōu)秀.測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列各題:
(1)參加這次跳繩測試的共有人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“中等”部分所對應(yīng)的圓心角的度數(shù)是
(4)如果該校初二年級的總?cè)藬?shù)是450人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請你估算該校初二年級跳繩成績?yōu)椤皟?yōu)秀”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過A(﹣1,0)B(4,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求拋物線解析式;
(2)點(diǎn)N是x軸下方拋物線上的一點(diǎn),連接AN,若tan∠BAN=2,求點(diǎn)N的縱坐標(biāo);
(3)點(diǎn)D是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),連接AD,在x軸上是否存在E,使∠AED=∠CAD?如果存在,請直接寫出點(diǎn)E坐標(biāo),如果不存在,請說明理由;
(4)連接AC、BC,△ABC的中線BM交y軸于點(diǎn)H,過點(diǎn)A作AG⊥BC,垂足為G,點(diǎn)F是線段BH上的一個動點(diǎn)(不與B、H重合),點(diǎn)F沿線段BH從點(diǎn)B向H移動,移動后的點(diǎn)記作點(diǎn)F′,連接F′C、F′A,△F′AC的F′C、F′A兩邊上的高交于點(diǎn)P,連接AP,CP,△F′AC與△PAC的面積分別記為S1 , S2 , S1和S2的乘積記為m,在點(diǎn)F的移動過程中,探究m的值變化情況,若變化,請直接寫出m的變化范圍,若不變,直接寫出這個m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=2 ,把邊BC繞點(diǎn)B逆時針旋轉(zhuǎn)30°得到線段BP,連接AP并延長交CD于點(diǎn)E,連接PC,則三角形PCE的面積為

查看答案和解析>>

同步練習(xí)冊答案