如圖,在平面直角坐標(biāo)系中,有一直角△ABC,且A(0,5),B(-5,2),C(0,2),并已知△AA1C1是由△ABC經(jīng)過旋轉(zhuǎn)變換得到的.
(1)問由△ABC旋轉(zhuǎn)得到的△AA1C1的旋轉(zhuǎn)角的度數(shù)是多少?并寫出旋轉(zhuǎn)中心的坐標(biāo);
(2)請你畫出仍以(1)中的旋轉(zhuǎn)中心為旋轉(zhuǎn)中心,將△AA1C1、△ABC分別按順時針、逆時針各旋轉(zhuǎn)90°的兩個三角形,并寫出變換后與A1相對應(yīng)點(diǎn)A2的坐標(biāo);
(3)利用變換前后所形成圖案證明勾股定理(設(shè)△ABC兩直角邊為a、b,斜邊為c).

【答案】分析:(1)圖象的旋轉(zhuǎn)可以利用某點(diǎn)的旋轉(zhuǎn)來找到旋轉(zhuǎn)的角度和旋轉(zhuǎn)中心;
(2)在解決題中第2問時,還需認(rèn)真分析、觀察旋轉(zhuǎn)前后圖案的特征,并利用其面積關(guān)系來驗(yàn)證勾股定理.
(3)利用正方形的面積的不同計算方法進(jìn)行驗(yàn)證勾股定理.
解答:解:(1)旋轉(zhuǎn)角為90°,中心坐標(biāo)為(-1,1);
(2)如圖,點(diǎn)A1對應(yīng)點(diǎn)A2的坐標(biāo)為(-2,-3);
(3)證明:正方形AA1A2B面積c2,正方形C1C2C3C的面積(b-a)2,
設(shè)AC=b,BC=a,

c2-b2+2ab-a2=2ba
∴c2=b2+a2
點(diǎn)評:本題考查了如何利用旋轉(zhuǎn)來設(shè)計圖案,同時也是考查點(diǎn)的坐標(biāo)變化.在一定程度上也可以認(rèn)為是考查學(xué)生的動手操作的能力和空間想象的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案