【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(3,2)、B(3,5)、C(1,2).
⑴在平面直角坐標(biāo)系中畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1;
⑵把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2,點(diǎn)C2在AB上.請寫出:
①旋轉(zhuǎn)角為 度;
②點(diǎn)B2的坐標(biāo)為 .
【答案】⑴詳見解析;⑵ ①90 ;②(6,2)
【解析】
(1)分別得到點(diǎn)A、B、C關(guān)于x軸的對(duì)稱點(diǎn),連接點(diǎn)A1,B1,C1,即可解答;
(2)①根據(jù)點(diǎn)A,B,C的坐標(biāo)分別求出AC,BC,AC的長度,根據(jù)勾股定理逆定理得到∠CAB=90°,即可得到旋轉(zhuǎn)角;
②根據(jù)旋轉(zhuǎn)的性質(zhì)可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐標(biāo)為(6,2).
解:(1)A(3,2)、B(3,5)、C(1,2)關(guān)于x軸的對(duì)稱點(diǎn)分別為A1(3,-2),B1(3,-5),C1(1,-2),
如圖所示,
(2)①∵A(3,2)、B(3,5)、C(1,2),
∴AB=3,AC=2,BC=,
∴,
∵AB2+AC2=13,
∴AB2+AC2=BC2,
∴∠CAB=90°,
∵AC與AC2的夾角為∠CAC2,
∴旋轉(zhuǎn)角為90°;
②∵AB=AB2=3,
∴CB2=AC+AB2=5,
∴B2的坐標(biāo)為(6,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是的斜邊AB上一點(diǎn),以AE為直徑的與邊BC相切于點(diǎn)D,交邊AC于點(diǎn)F,連結(jié)AD.
(1)求證:AD平分.
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長分別為10cm和4cm的矩形紙片沿著虛線剪成兩個(gè)全等的梯形紙片.裁剪線與矩形較長邊所夾的銳角是45°,則梯形紙片中較短的底邊長為( 。
A.2cmB.2.5cmC.3cmD.3.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D是AB上一點(diǎn),已知AC=10,AC2=AD·AB.
(1)證明△ACD∽△ABC.
(2)如圖2,過點(diǎn)C作CE∥AB,且CE=6,連結(jié)DE交BC于點(diǎn)F;
①若四邊形ADEC是平行四邊形,求的值;
②設(shè)AD=x,=y,求y關(guān)于x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,聰聰想在自己家的窗口A處測量對(duì)面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點(diǎn)A,B,C,D在同一平面內(nèi).
(1)求AB與CD之間的距離(結(jié)果保留根號(hào)).
(2)求建筑物CD的高度(結(jié)果精確到1m).(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)M是平行四邊形ABCD對(duì)角線AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BM作垂線,垂足分別為點(diǎn)E、F,點(diǎn)O為AC的中點(diǎn).
⑴如圖1,當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),OE與OF的數(shù)量關(guān)系是 .
⑵直線BM繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),且∠OFE=30°.
①如圖2,當(dāng)點(diǎn)M在線段AC上時(shí),猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?請你寫出來并加以證明;
②如圖3,當(dāng)點(diǎn)M在線段AC的延長線上時(shí),請直接寫出線段CF、AE、OE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲樓AB高20米,乙樓CD高10米,兩棟樓之間的水平距離BD=30m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小明在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求該電視塔的高度EF.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長是9,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)是邊上一點(diǎn),,連接,把正方形沿折疊,使點(diǎn),分別落在點(diǎn),處,當(dāng)點(diǎn)落在線段上時(shí),線段的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形中,,是上一點(diǎn),連接交于點(diǎn),過點(diǎn)作交于點(diǎn).若,,則的長是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com