【題目】如圖,在平面直角坐標系中,矩形的頂點、分別落在軸、軸正半軸上,點在邊上,點在邊上,且,已知,

1)求點的坐標;

2)點關(guān)于點的對稱點為點,點點出發(fā),以每秒1個單位的速度沿射線運動,設(shè)點的運動時間為秒,的面積為,用含的代數(shù)式表示

3)在(2)的條件下,點為平面內(nèi)一點,點在線段上運動時,作的平分線交軸于點為何值時,四邊形為矩形?并求此時點的坐標.

【答案】1;(2;(3)故當t=4時,四邊形為矩形,此時M6,-3).

【解析】

1)先確定出點A的坐標,進而得出OA,最后在RtOEF中,利用勾股定理求出OE即可得出點E的坐標;

2)分兩種情況,用三角形的面積公式即可解決問題;

3)先利用對稱求出點D的坐標,進而得出OD,由角平分線的性質(zhì)定理得出DP=OD求出點P的坐標,再利用勾股定理求出點N的坐標,根據(jù)矩形的性質(zhì),由點的平移方式即可求得點M的坐標.

解:(1)在矩形OABC中,B6,8),
A6,0),
OA=6,
設(shè)OE=a
EF=AE=OA-OE=6-a,

,

,

RtAEF中,根據(jù)勾股定理得,OE2+OF2=EF2,
a2+12=6-a2,
,

;

2)∵BCOA,B6,8),OC=AB=8,
Pt8),PB=|t-6|
①當點P在邊BC上時,如圖1,


0≤t6,
PB=6-t,

;

②當點PCB的延長時,如圖2


t6,
PB=t-6,

即:;

3)由(1)知,

∵點D是點E關(guān)于點A的對稱點,
,

,

如圖3


∵四邊形DPNM是矩形,
∴∠DPN=90°=DON,
NPDPNOOD,
DN是∠PDO的平分線,
NO=NP

RtNDORtNDP中,

RtNDORtNDPHL),

,
Pt,8),,

,(點P在線段BC上,舍去)

P4,8
設(shè)N0,n),
ON=n,
PN=nCN=OC-ON=8-n,

RtCNP中,根據(jù)勾股定理得,CN2+CP2=PN2,
∴(8-n2+16=n2
n=5,
N05),

即點P48)平移到N0,5),向左平移四個單位,向下平移3個單位,

D10,0)由此方式平移后得到的M6-3).

故當t=4時,四邊形為矩形,此時M6-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明電器超市銷售每臺進價分別為190元、160元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

2

6

1840

第二周

5

7

2840

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

1)求A、B兩種型號的電風(fēng)扇的銷售單價;

2)若超市準備再采購這兩種型號的電風(fēng)扇共40臺,這40臺電風(fēng)扇全部售出后,若利潤不低于2660元,求A種型號的電風(fēng)扇至少要采購多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃購進甲、乙兩種商品,已知甲的進價比乙多20/件,用2000元購進甲種商品的件數(shù)與用1600元購進乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進價各是多少元?

2)小麗用950元只購買乙種商品,她購買乙種商品件數(shù)y(件),該商品的銷售單價x(元),列出yx函數(shù)關(guān)系式?若超市銷售乙種商品,至少要獲得20%的利潤,那么小麗最多可以購買多少件乙種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)證明原方程有兩個不相等的實數(shù)根;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中,A,B,C,P,Q,R顯示了6名學(xué)生平均每周用于閱讀課外書的時間和用于看電視的時間(單位:h)

(1)用有序數(shù)對表示圖中點A,B,C,P,Q,R

(2)圖中方格紙的對角線的左上方的點有什么共同的特點?它右下方的點呢?

(3)三角形ABC的圖形經(jīng)過怎樣的變換后得到三角形PQR的圖形?其中點A對應(yīng)點P,B對應(yīng)點Q,C對應(yīng)點R

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知ABCD,求證:EGF=AEG+CFG

(2)如圖2,已知ABCD,AEF與∠CFE的平分線交于點G.猜想∠G的度數(shù)。證明你的猜想

(3)如圖3,已知ABCD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,G=95°,求∠H的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場以每件42元的價錢購進一種服裝,根據(jù)試銷得知:這種服裝每天的銷售量t(件),與每件的銷售價x(元/件)可看成是一次函數(shù)關(guān)系:t=-3x+204.

1)寫出商場賣這種服裝每天的銷售利潤與每件的銷售價之間的函數(shù)關(guān)系式(每天的銷售利潤是指所賣出服裝的銷售價與購進價的差);

(2)通過對所得函數(shù)關(guān)系式進行配方,指出:商場要想每天獲得最大的銷售利潤,每件的銷售價定為多少最為合適;最大銷售利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年開始,新冠病毒疫情嚴峻,某愛心組織緊急籌集了部分資金,計劃購買甲、乙兩種救災(zāi)物品共4000件送往武漢,已知每件甲種物品的價格比每件乙種物品的價格貴10元,用450元購買甲種物品的件數(shù)恰好與用400元購買乙種物品的件數(shù)相同.

1)求甲、乙兩種救災(zāi)物品每件的價格分別是多少元?

2)經(jīng)調(diào)查,災(zāi)區(qū)對乙種物品件數(shù)需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這4000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(其中b,c為常數(shù))的圖象經(jīng)過點A31),點C0,4),頂點為點M,過點AABx軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC

1)求該二次函數(shù)的解析式及點M的坐標.

2)若將該二次函數(shù)圖象向下平移mm0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在ABC的內(nèi)部(不包括ABC的邊界),求m的取值范圍.

3)沿直線AC方向平移該二次函數(shù)圖象,使得CM與平移前的CB相等,求平移后點M的坐標.

4)點P是直線AC上的動點,過點P作直線AC的垂線PQ,記點M關(guān)于直線PQ的對稱點為M′.當以點P、A、M、M′為頂點的四邊形為平行四邊形時,直接寫出點P的坐標.

查看答案和解析>>

同步練習(xí)冊答案