【題目】如圖,AB∥CD,AD與BC交于點E,EF是∠BED的平分線,若∠1=300,∠2=400。(1)求∠B、∠D的度數.(2)求∠BEF的度數
【答案】(1)∠B=40°, ∠D=30°;(2)35°
【解析】
(1)根據平行線的性質,即可解答
(2)首先過點E作EM∥AB,由AB∥CD,可得EM∥AB∥CD,然后根據兩直線平行,內錯角相等,即可求得∠AEC的度數,又由對頂角相等,求得∠BED的度數,由EF是∠BED的平分線,即可求得答案
(1)∵AB∥CD,∠1=30°,∠2=40°,
∴∠B=∠2,∠D=∠1(兩直線平行,內錯角相等)
∴∠B=40°, ∠D=30°;
(2)過點E作EM∥AB,
∵AB∥CD,
∴EM∥AB∥CD,
∵∠1=30°,∠2=40°,
∴∠3=∠1=30°,∠4=∠2=40°,
∴∠BED=∠AEC=∠3+∠4=70°,
∵EF是∠BED的平分線,
∴∠BEF=∠BED=×70°=35°
故答案為:35°
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為⊙O上一點,DE是⊙O的切線,DE⊥AC交AC的延長線于點E,FB是⊙O的切線交AD的延長線于點F.
(1)求證:AD平分∠BAC;
(2)若DE=3,⊙O的半徑為5,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數 | 眾數 | 中位數 | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教練根據這5次成績,選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 .(填“變大”、“變小”或“不變”).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖7,推理填空:
(1)∵∠A =∠_____(已知),
∴AC∥ED(____________________________________);
(2)∵∠2 =∠_____(已知),
∴AC∥ED(_________________________________________);
(3)∵∠A +∠____ = 180°(已知),
∴AB∥FD(_________________________________________);
(4)∵AC∥ED(已知),
∴∠2 +∠____ = 180°(_________________________________________);
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD內有一點F,F(xiàn)B與FC分別平分∠ABC和∠BCD,點E為矩形ABCD外一點,連接BE,CE.現(xiàn)添加下列條件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四邊形BECF是正方形的共有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,各內角的平分線相交于點E,F,G,H.
(1)求證:四邊形EFGH是矩形;
(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個一元二次方程,,其中,,,下列四個結論中錯誤的是( )
A.如果方程有兩個不相等的實數根,那么方程也有兩個不相等的實數
B.如果4是方程的一個根,那么是方程的另一個根
C.如果方程有兩根符號相同,那么方程的兩符號也相同
D.如果方程和方程有一個相同的根,那么這個根必是
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com