【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨自挺立的紀念碑,如圖.拱門的地面寬度為200米,兩側距地面高150米處各有一個觀光窗,兩窗的水平距離為100米,求拱門的最大高度.

【答案】解:如圖所示建立平面直角坐標系,
此時,拋物線與x軸的交點為C(﹣100,0),D(100,0),
設這條拋物線的解析式為y=a(x﹣100)(x+100),
∵拋物線經過點B(50,150),
可得 150=a(50﹣100)(50+100).
解得 ,

即 拋物線的解析式為 ,
頂點坐標是(0,200)
∴拱門的最大高度為200米.

【解析】因為拱門是拋物線形的建筑物,所以符合拋物線的性質,以CD的中垂線為y軸,CD所在的直線為x軸,可列出含有未知量的拋物線解析式,由A、B的坐標可求出拋物線的解析式,然后就變成求拋物線的頂點坐標的問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】自20141228日北京公交地鐵調價以來,人們的出行成本發(fā)生了較大的變化. 小林根據新聞,將地鐵和公交車的票價繪制成了如下兩個表格。(說明:表格中“612公里指的是大于6公里,小于等于12公里,其他類似)

北京地鐵新票價

里程范圍

對應票價

06公里

3

612公里

4

1222公里

5

2232公里

6

32公里以上

每增加1元可再乘坐20公里

*持市政交通一卡通花費累計滿一定金額后可打折

北京公交車新票價

里程范圍

對應票價

010公里

2

1015公里

3

1520公里

4

20公里以上

每增加1元可再乘坐5公里

*持市政交通一卡通刷卡,普通卡打5折,

學生卡打2.5

根據以上信息回答下列問題:

小林辦了一張市政交通一卡通學生卡,目前乘坐地鐵沒有折扣。

1)如果小林全程乘坐地鐵的里程為14公里,用他的學生卡需要刷卡交費________元;

2)如果小林全程乘坐公交車的里程為16公里,用他的學生卡需要刷卡交________元;

3)小林用他的學生卡乘坐一段地鐵后換乘公交車,兩者累計里程為12公里。已知他乘坐地鐵平均每公里花費0.4元,乘坐公交車平均每公里花費0.25元,此次行程共花費4.5元。請問小林乘坐地鐵和公交車的里程分別是多少公里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將線段AB繞點A逆時針旋轉60°得AC,連接BC,作△ABC的外接圓⊙O,點P為劣弧 上的一個動點,弦AB,CP相交于點D.

(1)求∠APB的大。
(2)當點P運動到何處時,PD⊥AB?并求此時CD:CP的值;
(3)在點P運動過程中,比較PC與AP+PB的大小關系,并對結論給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點PAD 邊上以每秒1cm的速度從點A向點D運動,點QBC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在運動以后,以PD、Q、B四點組成平行四邊形的次數(shù)有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,的平行線的延長線于點,交的延長線于點,交于點 .

(1)請指出圖中平行四邊形的個數(shù),并說明理由;

(2)相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,EF過點O且與AB、CD分別相交于點E、F,連接EC.

(1)求證:OE=OF;

(2)若EF⊥AC,平行四邊形ABCD的周長是22,求△BEC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:OB,OM,ON內的射線.

如圖1,若OM平分,ON平分當射線OB繞點O內旋轉時,______

也是內的射線,如圖2,若,OM平分,ON平分,當繞點O內旋轉時,求的大。

的條件下,若,當O點以每秒的速度逆時針旋轉t秒,如圖3,若3,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在大小為4×4的正方形網格中,是相似三角形的是(請?zhí)钌暇幪枺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cmBC=8cm,點DAB的中點.

(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經過1s后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPDCQP全等?

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經過多長時間點P與點Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

同步練習冊答案