【題目】如圖,某數(shù)學(xué)興趣小組要測量一棟五層居民樓CD的高度.該樓底層為車庫,高2.5米;上面五層居住,每層高度相等.測角儀支架離地1.5米,在A處測得五樓頂部點D的仰角為60°,在B處測得四樓頂點E的仰角為30°,AB=14米.求居民樓的高度(精確到0.1米,參考數(shù)據(jù): ≈1.73)

【答案】解:設(shè)每層樓高為x米,
由題意得:MC′=MC﹣CC′=2.5﹣1.5=1米,
∴DC′=5x+1,EC′=4x+1,
在Rt△DC′A′中,∠DA′C′=60°,
∴C′A′= = (5x+1),
在Rt△EC′B′中,∠EB′C′=30°,
∴C′B′= = (4x+1),
∵A′B′=C′B′﹣C′A′=AB,
(4x+1)﹣ (5x+1)=14,
解得:x≈3.17,
則居民樓高為5×3.17+2.5≈18.4米
【解析】設(shè)每層樓高為x米,由MC﹣CC′求出MC′的長,進(jìn)而表示出DC′與EC′的長,在直角三角形DC′A′中,利用銳角三角函數(shù)定義表示出C′A′,同理表示出C′B′,由C′B′﹣C′A′求出AB 的長即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O上依次有A、B、C、D四個點, = ,連接AB、AD、BD,弦AB不經(jīng)過圓心O,延長AB到E,使BE=AB,連接EC,F(xiàn)是EC的中點,連接BF.
(1)若⊙O的半徑為3,∠DAB=120°,求劣弧 的長;
(2)求證:BF= BD;
(3)設(shè)G是BD的中點,探索:在⊙O上是否存在點P(不同于點B),使得PG=PF?并說明PB與AE的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列算式運算結(jié)果正確的是(
A.(2x52=2x10
B.(﹣3)2=
C.(a+1)2=a2+1
D.a﹣(a﹣b)=﹣b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在某次作業(yè)中得到如下結(jié)果: sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°≈( 2+( 2=1.
據(jù)此,小明猜想:對于任意銳角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)當(dāng)α=30°時,驗證sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,請給予證明;若不成立,請舉出一個反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】BC為鄰邊作菱形ABCD,頂點D恰在該圓直徑的三等分點上,則該菱形的邊長為(
A. 或2
B. 或2
C. 或2
D. 或2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c經(jīng)過平行四邊形ABCD的頂點A(0,3)、B(﹣1,0)、D(2,3),拋物線與x軸的另一交點為E.經(jīng)過點E的直線l將平行四邊形ABCD分割為面積相等兩部分,與拋物線交于另一點F.點P在直線l上方拋物線上一動點,設(shè)點P的橫坐標(biāo)為t

(1)求拋物線的解析式;
(2)當(dāng)t何值時,△PFE的面積最大?并求最大值的立方根;
(3)是否存在點P使△PAE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三個非零實數(shù)x,y,z滿足:只要其中一個數(shù)的倒數(shù)等于另外兩個數(shù)的倒數(shù)的和,則稱這三個實數(shù)x,y,z構(gòu)成“和諧三組數(shù)”.
(1)實數(shù)1,2,3可以構(gòu)成“和諧三組數(shù)”嗎?請說明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三點均在函數(shù) (k為常數(shù),k≠0)的圖象上,且這三點的縱坐標(biāo)y1 , y2 , y3構(gòu)成“和諧三組數(shù)”,求實數(shù)t的值;
(3)若直線y=2bx+2c(bc≠0)與x軸交于點A(x1 , 0),與拋物線y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)兩點.
①求證:A,B,C三點的橫坐標(biāo)x1 , x2 , x3構(gòu)成“和諧三組數(shù)”;
②若a>2b>3c,x2=1,求點P( , )與原點O的距離OP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一條折線A1B1A2B2A3B3A4B4…,它是由過A1(0,0),B1(2,2),A2(4,0)組成的折線依次平移4,8,12,…個單位得到的,直線y=kx+2與此折線恰有2n(n≥1,且為整數(shù))個交點,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 )上的值域為[﹣1,2],則θ等于(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案