【題目】如圖,是的直徑,點(diǎn)、在上且,連接、,過點(diǎn)作交的延長線于點(diǎn).
求證:是的切線;
若,,求的半徑.
【答案】(1)見解析;(2)的半徑為.
【解析】
(1)連結(jié)OC,由F,C,B三等分半圓,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;
(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由F,C,B三等分半圓得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三邊的關(guān)系得AC=2CD=8,在Rt△ACB中,根據(jù)勾股定理求得AB,進(jìn)而求得⊙O的半徑.
證明:連結(jié),如圖,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴是的切線;
解:連結(jié),如圖,
∵為直徑,
∴,
∵,
∴,
∴,
∴,
在中,,
∴,
在中,,
即,
∴,
∴的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將矩形紙片ABCD沿AC剪開,得到△ABC和△ACD.
(1)將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,使∠α=∠BAC,得到圖2所示的△ABC′,過點(diǎn)C′作C′E∥AC,交DC的延長線于點(diǎn)E,試判斷四邊形ACEC′的形狀,并說明理由.
(2)若將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使B,A,D在同一條直線上,得到圖3所示的△ABC′,連接CC′,過點(diǎn)A作AF⊥CC′于點(diǎn)F,延長AF至點(diǎn)G,使FG=AF,連接CG,C′G,試判斷四邊形ACGC′的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度數(shù);
(2)若DE平分∠ADB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時(shí)過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(diǎn)(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對(duì)稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點(diǎn)的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,以AB為一邊作等邊△ABE,使點(diǎn)E落在正方形ABCD的內(nèi)部,連接AC交BE于點(diǎn)F,連接CE、DE,則下列說法中:①△ADE≌△BCE;②∠ACE=30°;③AF=CF;④ =2+,其中正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,用配方法求最值.
已知a,b為非負(fù)實(shí)數(shù),∵a+b﹣2=()2+()2﹣2=(﹣)2≥0,∴a+b≥2,當(dāng)且僅當(dāng)“a=b”時(shí),等號(hào)成立.示例:當(dāng)x>0時(shí),求y=x++1的最小值;
解:y=(x+)+1>2=3,當(dāng)x=,即x=1時(shí),y的最小值為3.
(1)探究:當(dāng)x>0時(shí),求y=的最小值;
(2)問題解決:隨著人們生活水平的提高,汽車已成為越來越多家庭的交通工具,假設(shè)某種汽車的購車費(fèi)用為10萬元,每年應(yīng)繳保險(xiǎn)費(fèi)等各類費(fèi)用共計(jì)0.4萬元,n年的保養(yǎng),維修費(fèi)用總和為萬元,問這種汽車使用多少年報(bào)廢最合算(即使用多少年的年平均費(fèi)用最少,年平均費(fèi)用=所有費(fèi)用:年數(shù)n)?最少年平均費(fèi)用為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為美化環(huán)境,某校計(jì)劃在一塊長為60米,寬為40米的長方形空地上修建一個(gè)長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.
(1)用含a的式子表示花圃的面積;
(2)如果通道所占面積是整個(gè)長方形空地面積的,求出此時(shí)通道的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D為AB上一點(diǎn),E為BC上一點(diǎn),且AC=CD=BD=BE,∠A=40°,則∠CDE的度數(shù)為( 。
A.50°B.40°C.60°D.80°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com