【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A4,0),點(diǎn)B0,4),CAB中點(diǎn),連接OC,將△AOC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到△AMN,記旋轉(zhuǎn)角為α,點(diǎn)O,C的對(duì)應(yīng)點(diǎn)分別是MN.連接BMPBM中點(diǎn),連接OP,PN

(Ⅰ)如圖.當(dāng)α45°時(shí),求點(diǎn)M的坐標(biāo);

(Ⅱ)如圖,當(dāng)α180°時(shí),求證:OPPNOPPN

(Ⅲ)當(dāng)△AOC旋轉(zhuǎn)至點(diǎn)B,M,N共線(xiàn)時(shí),求點(diǎn)M的坐標(biāo)(直接寫(xiě)出結(jié)果即可).

【答案】(Ⅰ)M422);(Ⅱ)見(jiàn)解析;(Ⅲ)滿(mǎn)足條件的點(diǎn)M的坐標(biāo)為(2,2)或(2,﹣2).

【解析】

(Ⅰ)如圖①中,過(guò)點(diǎn)MMDOAD.解直角三角形求出OD,OM即可解決問(wèn)題.

(Ⅱ)如圖②,當(dāng)α180°時(shí),點(diǎn)B,A,N共線(xiàn),OA,M共線(xiàn),利用直角三角形斜邊中線(xiàn)定理即可解決問(wèn)題.

(Ⅲ)分兩種情形:①如圖③1中,當(dāng)點(diǎn)M在線(xiàn)段BN上時(shí),②如圖③2中,當(dāng)點(diǎn)N在線(xiàn)段BM上時(shí),分別求解即可解決問(wèn)題.

(Ⅰ)如圖中,過(guò)點(diǎn)MMDOAD

A4,0),B0,4),

OAOB4

CAB的中點(diǎn),

OCCBCAAB,且OCAB

∴△AOC是等腰直角三角形,

∴當(dāng)α45°時(shí),點(diǎn)MAB上,

由旋轉(zhuǎn)可知:△AOC≌△AMN,

AMOA4MDADAM2,

ODOAAD42,

M42,2).

(Ⅱ)如圖,當(dāng)α180°時(shí),點(diǎn)B,A,N共線(xiàn),O,A,M共線(xiàn),

∵∠BNM=∠BOM90°,PBM的中點(diǎn),

OPPNPBPM

∴∠PMN=∠PNM,∠POB=∠PBO,

∵∠NPM180°﹣2PMN,∠BPO180°﹣2PBO,

∴∠MPN+BPO360°﹣2(∠PMN+PBO

∴∠MPN+BPO360°﹣245°+PMO+PBO),

∵∠PMO+PBO90°,

∴∠MPN+BPO90°,

∴∠OPN180°﹣(∠MPN+BPO)=90°,

OPPN

(Ⅲ)如圖③﹣1中,當(dāng)點(diǎn)M在線(xiàn)段BN上時(shí),

RtABN中,∵AB4,AN2,

AB2AN,

∴∠ABN30°,

BNAN2BMBNMN22,

過(guò)點(diǎn)MMKOBK,在MK上截取一點(diǎn)J,使得BJMJ,設(shè)BKa,

∵∠ABO45°,

∴∠MBK75°,∠KMB15°,

JBJM,

∴∠JBM=∠JMB15°,

∴∠BJK=∠JBM+JMB30°,

BJJM2aKJa,

BM2BK2+KM2

∴(222a2+2a+a2,

解得a42(負(fù)根已經(jīng)舍棄),

KM2a+a2,OK2,

M2,2),

如圖2中,當(dāng)點(diǎn)N在線(xiàn)段BM上時(shí),同法可得M2,﹣2),

綜上所述,滿(mǎn)足條件的點(diǎn)M的坐標(biāo)為(2,2)或(2,﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y軸,x軸分別相交于點(diǎn)A、B.點(diǎn)Dx軸上動(dòng)點(diǎn),點(diǎn)D從點(diǎn)B出發(fā)向原點(diǎn)O運(yùn)動(dòng),點(diǎn)E在點(diǎn)D右側(cè),DE=2BD.過(guò)點(diǎn)DDHAB于點(diǎn)H,將△DBH沿直線(xiàn)DH翻折,得到△DCH,連接CE.設(shè)BD=t,△DCE與△AOB重合部分面積為S.求:

1)求線(xiàn)段BC的長(zhǎng)(用含t的代數(shù)式表示);

2)求S關(guān)于t的函數(shù)解析式,并直接寫(xiě)出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC的兩條直角邊AB=4cm,AC=3cm,點(diǎn)D沿ABAB運(yùn)動(dòng),速度是1cm/秒,同時(shí),點(diǎn)E沿BCBC運(yùn)動(dòng),速度為2cm/. 動(dòng)點(diǎn)E到達(dá)點(diǎn)C時(shí)運(yùn)動(dòng)終止.連結(jié)DE、CD、AE.1)填空:當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)_______ 秒時(shí),△BDE△ABC相似?

2)設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)t秒時(shí)△ADE的面積為s,求st的函數(shù)解析式;

3)在運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻t,使CD⊥DE?若存在,求出時(shí)刻t;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-1.5,0)B(0,2),將△ABO順著x軸的正半軸無(wú)滑動(dòng)的滾動(dòng),第一次滾動(dòng)到①的位置,點(diǎn)B的對(duì)應(yīng)點(diǎn)記作B1;第二次滾動(dòng)到②的位置,點(diǎn)B1的對(duì)應(yīng)點(diǎn)記作B2;第三次滾動(dòng)到③的位置,點(diǎn)B2的對(duì)應(yīng)點(diǎn)記作B3;;依次進(jìn)行下去,則點(diǎn)B2020的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平行四邊形內(nèi)有兩個(gè)全等的正六邊形,若陰影部分的面積記為,平行四邊形的面積記為,的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初二對(duì)某班最近一次數(shù)學(xué)測(cè)驗(yàn)或續(xù)(得分取整數(shù))進(jìn)行統(tǒng)計(jì)分析,將所有成績(jī)由低到高分成五組,并繪制成如圖所示的頻數(shù)分布直方圖,請(qǐng)結(jié)合直方圖提供的信息,回答下列問(wèn)題:

1)該班共有名同學(xué)參加這次測(cè)驗(yàn);

2)這次測(cè)驗(yàn)成績(jī)的中位數(shù)落在第幾組內(nèi)(從左到右數(shù));

3)若該校一共有360名初二學(xué)生參加這次測(cè)驗(yàn),成績(jī)80分以上(不含80分)為優(yōu)秀,估計(jì)該校這次數(shù)學(xué)測(cè)驗(yàn)的優(yōu)秀人數(shù)是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)與x軸交于A(﹣1,0)、B3,0)兩點(diǎn),與y軸交于點(diǎn)C0,3).

1)求拋物線(xiàn)的解析式;

2)點(diǎn)D是第一象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合),過(guò)點(diǎn)DDF⊥x軸于點(diǎn)F,交直線(xiàn)BC于點(diǎn)E,連接BDCD.設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.求S關(guān)于m的函數(shù)解析式及自變量m的取值范圍,并求出S的最大值;

3)已知M為拋物線(xiàn)對(duì)稱(chēng)軸上一動(dòng)點(diǎn),若△MBC是以BC為直角邊的直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yax2+bx+c的圖象,經(jīng)過(guò)點(diǎn)A1,0),B30),C0,3)三點(diǎn),過(guò)點(diǎn)C,D(﹣3,0)的直線(xiàn)與拋物線(xiàn)的另一交點(diǎn)為E

1)請(qǐng)你直接寫(xiě)出:

拋物線(xiàn)的解析式   ;

直線(xiàn)CD的解析式   

點(diǎn)E的坐標(biāo)(   ,   );

2)如圖1,若點(diǎn)Px軸上一動(dòng)點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時(shí),可使得∠CPE45°,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo);

3)如圖2,若點(diǎn)Q是拋物線(xiàn)上一動(dòng)點(diǎn),作QHx軸于H,連接QA,QB,當(dāng)QB平分∠AQH時(shí),請(qǐng)你直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上不同于的兩點(diǎn),,連接.過(guò)點(diǎn),垂足為,直線(xiàn)相交于點(diǎn)

(1)求證:的切線(xiàn);

(2)當(dāng),時(shí),求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案