【題目】如圖,PB為⊙O的切線,B為切點(diǎn),直線PO交⊙于點(diǎn)E、F,過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和線段PE的長(zhǎng).
【答案】
(1)
解: 連接OB,
∵PB是⊙O的切線,
∴∠PBO=90°,
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB,
又∵PO=PO,
∴△PAO≌△PBO(SAS),
∴∠PAO=∠PBO=90°,
∴OA⊥PA,
∴直線PA為⊙O的切線
(2)
解:EF2=4ODOP.
證明:∵∠PAO=∠PDA=90°
∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°,
∴∠OAD=∠OPA,
∴△OAD∽△OPA,
∴ ,即OA2=ODOP,
又∵EF=2OA,
∴EF2=4ODOP.
(3)
解:∵OA=OC,AD=BD,BC=6,
∴OD= BC=3(三角形中位線定理),
設(shè)AD=x,
∵tan∠F= ,
∴FD=2x,OA=OF=2x﹣3,
在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32,
解之得,x1=4,x2=0(不合題意,舍去),
∴AD=4,OA=2x﹣3=5,
∵AC是⊙O直徑,
∴∠ABC=90°,
又∵AC=2OA=10,BC=6,
∴ cos∠ACB= .
∵OA2=ODOP,
∴3(PE+5)=25,
∴PE= .
【解析】(1)連接OB,根據(jù)垂徑定理的知識(shí),得出OA=OB,∠POA=∠POB,繼而證明△PAO≌△PBO,然后利用全等三角形的性質(zhì)結(jié)合切線的判定定理即可得出結(jié)論.(2)先證明△OAD∽△OPA,利用相似三角形的性質(zhì)得出OA與OD、OP的關(guān)系,然后將EF=20A代入關(guān)系式即可.(3)根據(jù)題意可確定OD是△ABC的中位線,設(shè)AD=x,然后利用三角函數(shù)的知識(shí)表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,繼而能求出cos∠ACB,再由(2)可得OA2=ODOP,代入數(shù)據(jù)即可得出PE的長(zhǎng).
【考點(diǎn)精析】通過靈活運(yùn)用勾股定理的概念和相似三角形的判定與性質(zhì),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),拋物線C1:y=﹣ x2+bx+c過A、B兩點(diǎn),與x軸另一交點(diǎn)為C.
(1)求拋物線解析式及C點(diǎn)坐標(biāo).
(2)向右平移拋物線C1 , 使平移后的拋物線C2恰好經(jīng)過△ABC的外心,拋物線C1、C2相交于點(diǎn)D,求四邊形AOCD的面積.
(3)已知拋物線C2的頂點(diǎn)為M,設(shè)P為拋物線C1對(duì)稱軸上一點(diǎn),Q為拋物線C1上一點(diǎn),是否存在以點(diǎn)M、Q、P、B為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫出P點(diǎn)坐標(biāo);不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,n+1個(gè)直角邊長(zhǎng)為1的等腰直角三角形,斜邊在同一直線上,設(shè)△B2D1C1的面積為S1 , △B3D2C2的面積為S2 , …,△Bn+1DnCn的面積為Sn , 則S1= , Sn=(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上,若四邊形EGFH是菱形,則AE的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)O出發(fā),乙每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)E也從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間t秒(0<t<2).
①過點(diǎn)E作x軸的平行線,與BC相交于點(diǎn)D(如圖所示),當(dāng)t為何值時(shí), 的值最小,求出這個(gè)最小值并寫出此時(shí)點(diǎn)E、P的坐標(biāo);
②在滿足①的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)F,使△EFP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某校從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次中考體育科目測(cè)試(把測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí)),并將測(cè)試結(jié)果繪制成了如圖所示的兩幅不完整統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖中提供的信息,結(jié)論錯(cuò)誤的是( )
A.本次抽樣測(cè)試的學(xué)生人數(shù)是40
B.在圖1中,∠α的度數(shù)是126°
C.該校九年級(jí)有學(xué)生500名,估計(jì)D級(jí)的人數(shù)為80
D.從被測(cè)學(xué)生中隨機(jī)抽取一位,則這位學(xué)生的成績(jī)是A級(jí)的概率為0.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com