已知,如圖△ABC中,D、E、F分別是三角形三邊中點(diǎn),△ABC的周長為30,面積為48,則△DEF的周長為
15
15
,面積為
12
12
分析:利用三角形的中位線定理可以得到:DE=
1
2
AC,DF=
1
2
BC,EF=
1
2
AB,則△DEF的周長等于△ABC的周長的一般,且△ABC∽△EFD,根據(jù)相似三角形的面積的比等于相似比的平方,即可求解.
解答:解:∵D、E、F分別是三角形三邊中點(diǎn),
∴DE=
1
2
AC,DF=
1
2
BC,EF=
1
2
AB
∴△DEF的周長=DE+DF+EF=
1
2
(AB+BC+AC)=
1
2
×30=15,
DE
AC
=
DF
BC
=
EF
AB
=
1
2
,
∴△ABC∽△EFD,
S△EFD
S△ABC
=(
1
2
2=
1
4

∴S△EFD=
1
4
S△ABC=
1
4
×48=12.
故答案是:15,12.
點(diǎn)評(píng):本題考查了三角形的中位線定理以及相似三角形的判定與性質(zhì),利用對(duì)應(yīng)邊的相等的三角形相似,判定△ABC∽△EFD是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖△ABC中,AD為△ABC的角平分線,求證:AB•DC=AC•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•河北)已知:如圖△ABC中,∠A的平分線AD交BC于D,⊙O過點(diǎn)A,且與BC相切于D,與AB、AC分別相交于E、F,AD與EF相交于G.
(1)求證:AF•FC=GF•DC;
(2)已知AC=6cm,DC=2cm,求FC、GF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖△ABC中,∠ACB=90°,D是AC上任意一點(diǎn),DE⊥AB于E,M,N分別是BD,CE的中點(diǎn),求證:MN⊥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求證:∠ACD=∠B.

查看答案和解析>>

同步練習(xí)冊(cè)答案