【題目】如圖,△ABC中,AB=AC,D點(diǎn)在BC上,∠BAD=30°,且∠ADC=60°.請(qǐng)完整說(shuō)明為何AD=BD與CD=2BD的理由.

【答案】解:∵∠4=60°,∠1=30°,
根據(jù)三角形外角定理可得:∠ABD=∠4﹣∠1=60°﹣30°=30°=∠1.
∴BD=AD.
∵∠ABD=30°,
又∵AB=AC,
∴∠C=∠ABD=30°,
∴∠2=180°﹣∠4﹣∠C=180°﹣60°﹣30°=90°,
∵∠C=30°,
∴CD=2AD=2BD.

【解析】求出∠B、∠C、∠DAC的度數(shù),根據(jù)等腰三角形的判定方法以及30度直角三角形的性質(zhì)即可解決問(wèn)題.本題考查等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識(shí),解題的關(guān)鍵是靈活應(yīng)用這些知識(shí)解決問(wèn)題,屬于基礎(chǔ)題,中考常考題型.
【考點(diǎn)精析】本題主要考查了含30度角的直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DEAB的垂直平分線,交BC于點(diǎn)D,交AB于點(diǎn)E,已知AE=1 cm,ACD的周長(zhǎng)為12 cm,則ABC的周長(zhǎng)是(  )

A. 13 cm B. 14 cm C. 15 cm D. 16 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖(一)、圖(二)分別為甲、乙兩班學(xué)生參加投籃測(cè)驗(yàn)的投進(jìn)球數(shù)直方圖.若甲、乙兩班學(xué)生的投進(jìn)球數(shù)的眾數(shù)分別為a、b;中位數(shù)分別為c、d,則下列關(guān)于a、b、c、d的大小關(guān)系,何者正確?( 。
A.a>b,c>d
B.a>b,c<d
C.a<b,c>d
D.a<b,c<d

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一內(nèi)部裝有水的直圓柱形水桶,桶高20公分;另有一直圓柱形的實(shí)心鐵柱,柱高30公分,直立放置于水桶底面上,水桶內(nèi)的水面高度為12公分,且水桶與鐵柱的底面半徑比為2:1.今小賢將鐵柱移至水桶外部,過(guò)程中水桶內(nèi)的水量未改變,若不計(jì)水桶厚度,則水桶內(nèi)的水面高度變?yōu)槎嗌俟?( 。?/span>

A.4.5
B.6
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的矩形ABCD中,E為 的中點(diǎn),有一圓過(guò)C、D、E三點(diǎn),且此圓分別與 相交于P、Q兩點(diǎn).甲、乙兩人想找到此圓的圓心O,其作法如下: (甲) 作∠DEC的角平分線L,作 的中垂線,交L于O點(diǎn),則O即為所求;(乙) 連接 、 ,兩線段交于一點(diǎn)O,則O即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。

A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD是一張邊長(zhǎng)為12公分的皮革.皮雕師傅想在此皮革兩相鄰的角落分別切下△PDQ與△PCR后得到一個(gè)五邊形PQABR,其中PD=2DQ,PC=RC,且P、Q、
R三點(diǎn)分別在CD、AD、BC上,如圖所示.

(1)當(dāng)皮雕師傅切下△PDQ時(shí),若DQ長(zhǎng)度為x公分,請(qǐng)你以x表示此時(shí)△PDQ的面積.
(2)承(1),當(dāng)x的值為多少時(shí),五邊形PQABR的面積最大?請(qǐng)完整說(shuō)明你的理由并求出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點(diǎn)O,點(diǎn)D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點(diǎn)P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為 ;④AD2+BE2﹣2OP2=2DPPE,其中所有正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、C在雙曲線上,點(diǎn) B、D在雙曲線上,AD// BC//y .

(I)當(dāng)m=6,n=-3,AD=3 時(shí),求此時(shí)點(diǎn) A 的坐標(biāo);

(II)若點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱,試判斷四邊形 ABCD的形狀,并說(shuō)明理由;

(III)AD=3,BC=4,梯形ABCD的面積為,求mn 的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y1=ax2+bx過(guò)(﹣2,4),(﹣4,4)兩點(diǎn).
(1)求二次函數(shù)y1的解析式;
(2)將y1沿x軸翻折,再向右平移2個(gè)單位,得到拋物線y2 , 直線y=m(m>0)交y2于M、N兩點(diǎn),求線段MN的長(zhǎng)度(用含m的代數(shù)式表示);
(3)在(2)的條件下,y1、y2交于A、B兩點(diǎn),如果直線y=m與y1、y2的圖象形成的封閉曲線交于C、D兩點(diǎn)(C在左側(cè)),直線y=﹣m與y1、y2的圖象形成的封閉曲線交于E、F兩點(diǎn)(E在左側(cè)),求證:四邊形CEFD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案