【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問(wèn)△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.
【答案】(1)拋物線的解析式為y=﹣x2+3x+4.(2)點(diǎn)P的坐標(biāo)為(2,6)或(4,0).(3)△PBC的面積的最大值為8.
【解析】試題分析:(1)將點(diǎn)A(-1,0),B(4,0)的坐標(biāo)代入拋物線的解析式,求得b、c的值即可;
(2)先由函數(shù)解析式求得點(diǎn)C的坐標(biāo),從而得到△OBC為等腰直角三角形,故此當(dāng)CF=PF時(shí),以P,C,F為頂點(diǎn)的三角形與△OBC相似.
設(shè)點(diǎn)P的坐標(biāo)為(a,-a2+3a+4).則CF=a,PF=-a2+3a,接下來(lái)列出關(guān)于a的方程,從而可求得a的值,于是可求得點(diǎn)P的坐標(biāo);
(3)連接EC.設(shè)點(diǎn)P的坐標(biāo)為(a,-a2+3a+4).則OE=a,PE=-a2+3a+4,EB=4-a.然后依據(jù)S△PBC=S四邊形PCEB-S△CEB列出△PBC的面積與a的函數(shù)關(guān)系式,從而可求得三角形的最大面積.
試題解析:(1)將點(diǎn)A(-1,0),B(4,0)的坐標(biāo)代入函數(shù)的表達(dá)式得:
,
解得:b=3,c=4.
拋物線的解析式為y=-x2+3x+4.
(2)如圖1所示:
∵令x=0得y=4,
∴OC=4.
∴OC=OB.
∵∠CFP=∠COB=90°,
∴FC=PF時(shí),以P,C,F為頂點(diǎn)的三角形與△OBC相似.
設(shè)點(diǎn)P的坐標(biāo)為(a,-a2+3a+4)(a>0).
則CF=a,PF=|-a2+3a+4-4|=|a2-3a|.
∴|a2-3a|=a.
解得:a=2,a=4.
∴點(diǎn)P的坐標(biāo)為(2,6)或(4,0).
(3)如圖2所示:連接EC.
設(shè)點(diǎn)P的坐標(biāo)為(a,-a2+3a+4).則OE=a,PE=-a2+3a+4,EB=4-a.
∵S四邊形PCEB=OBPE=×4(-a2+3a+4),S△CEB=EBOC=×4×(4-a),
∴S△PBC=S四邊形PCEB-S△CEB=2(-a2+3a+4)-2(4-a)=-2a2+8a.
∵a=-2<0,
∴當(dāng)a=2時(shí),△PBC的面積S有最大值.
∴P(2,6),△PBC的面積的最大值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校八年級(jí)學(xué)生去距學(xué)校15千米遠(yuǎn)的社會(huì)實(shí)踐基地參加社會(huì)實(shí)踐活動(dòng),一部分同學(xué)騎自行先走,過(guò)了40分鐘后,其余同學(xué)乘汽車(chē)出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車(chē)的速度是騎車(chē)同學(xué)速度的3倍,求騎車(chē)同學(xué)的速度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有兩條公路OM,ON相交成30°角,沿公路OM方向離O點(diǎn)80米處有一所學(xué)校A.當(dāng)重型運(yùn)輸卡車(chē)P沿道路ON方向行駛時(shí),在以P為圓心50米長(zhǎng)為半徑的圓形區(qū)域內(nèi)都會(huì)受到卡車(chē)噪聲的影響,且卡車(chē)P與學(xué)校A的距離越近噪聲影響越大.若已知重型運(yùn)輸卡車(chē)P沿道路ON方向行駛的速度為18千米/時(shí).
(1)求對(duì)學(xué)校A的噪聲影響最大時(shí)卡車(chē)P與學(xué)校A的距離;
(2)求卡車(chē)P沿道路ON方向行駛一次給學(xué)校A帶來(lái)噪聲影響的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC三邊分別是a、b、c,且滿(mǎn)足(b﹣c)(a2+b2)=bc2﹣c3, 則△ABC是( )
A. 等邊三角形 B. 等腰三角形 C. 直角三角形 D. 等腰或直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)測(cè)驗(yàn)中,隨機(jī)抽取了10份試卷,其成績(jī)?nèi)缦拢?/span>85,81,89,81,72,82,77,81,79,83,則這組數(shù)據(jù)的中位數(shù)為( )
A. 72B. 81C. 77D. 82
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com