如圖1,在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,二次函數(shù)y=ax2+x+c的圖象F交x軸于B、C兩點(diǎn),交y軸于M點(diǎn),其中B(-3,0),M(0,-1).已知AM=BC.
(1)求二次函數(shù)的解析式;
(2)證明:在拋物線F上存在點(diǎn)D,使A、B、C、D四點(diǎn)連接而成的四邊形恰好是平行四邊形,并請求出直線BD的解析式;
(3)在(2)的條件下,設(shè)直線l過D且分別交直線BA、BC于不同的P、Q兩點(diǎn),AC、BD相交于N.
①若直線l⊥BD,如圖1,試求的值;
②若l為滿足條件的任意直線.如圖2.①中的結(jié)論還成立嗎?若成立,證明你的猜想;若不成立,請舉出反例.

【答案】分析:(1)利用待定系數(shù)法求出二次函數(shù)的解析式;
(2)首先求出D點(diǎn)的坐標(biāo),可得AD=BC且AD∥BC,所以四邊形ABCD是平行四邊形;再根據(jù)B、D點(diǎn)的坐標(biāo),利用待定系數(shù)法求出直線BD的解析式;
(3)本問的關(guān)鍵是判定平行四邊形ABCD是菱形.
①推出AC∥直線l,從而根據(jù)平行線間的比例線段關(guān)系,求出BP、CQ的長度,計(jì)算出=;
②判定△PAD∽△DCQ,得到AP•CQ=25,利用這個(gè)關(guān)系式對進(jìn)行分式的化簡求值,結(jié)論為=不變.
解答:解:(1)∵二次函數(shù)y=ax2+x+c的圖象經(jīng)過點(diǎn)B(-3,0),M(0,-1),

解得a=,c=-1.
∴二次函數(shù)的解析式為:y=x2+x-1.

(2)由二次函數(shù)的解析式為:y=x2+x-1,
令y=0,得x2+x-1=0,
解得x1=-3,x2=2,∴C(2,0),∴BC=5;
令x=0,得y=-1,∴M(0,-1),OM=1.
又AM=BC,∴OA=AM-OM=4,∴A(0,4).
設(shè)AD∥x軸,交拋物線于點(diǎn)D,如圖1所示,
則yD=x2+x-1=OA=4,
解得x1=5,x2=-6(位于第二象限,舍去)
∴D點(diǎn)坐標(biāo)為(5,4).
∴AD=BC=5,
又∵AD∥BC,
∴四邊形ABCD為平行四邊形.
即在拋物線F上存在點(diǎn)D,使A、B、C、D四點(diǎn)連接而成的四邊形恰好是平行四邊形.
設(shè)直線BD解析式為:y=kx+b,∵B(-3,0),D(5,4),
,
解得:k=,b=,
∴直線BD解析式為:y=x+

(3)在Rt△AOB中,AB==5,又AD=BC=5,∴?ABCD是菱形.
①若直線l⊥BD,如圖1所示.
∵四邊形ABCD是菱形,
∴AC⊥BD,
∴AC∥直線l,
,
∵BA=BC=5,
∴BP=BQ=10,
==;
②若l為滿足條件的任意直線,如圖2所示,此時(shí)①中的結(jié)論依然成立,理由如下:
∵AD∥BC,CD∥AB,
∴△PAD∽△DCQ,
,
∴AP•CQ=AD•CD=5×5=25.

=
=
=
=
=
=
點(diǎn)評:本題考查了二次函數(shù)壓軸題,正確解答本題需要熟練掌握函數(shù)的圖象與性質(zhì)(二次函數(shù)與一次函數(shù))、平面圖形的性質(zhì)與應(yīng)用(平行四邊形、菱形、相似三角形、平行線等).本題涉及考點(diǎn)較多,雖有一點(diǎn)的難度,但相信不少考生均可順利解答.第(3)問中,需要注意平行四邊形ABCD是菱形,這樣后續(xù)的計(jì)算均可迎刃而解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角坐標(biāo)系中,反比例函數(shù)y=
kx
(k>0)
的圖象與矩形AOBC的邊AC、BC分別相交于點(diǎn)E、F,且點(diǎn)C坐標(biāo)為(4,3),將△CEF沿EF對折后,C點(diǎn)恰好落在OB上.
(1)求k的值;
(2)如圖2,在直角坐標(biāo)系中,P點(diǎn)坐標(biāo)為(2,-3),請?jiān)陔p曲線上找兩點(diǎn)M、N,使四邊形OPMN是平行四邊形,求M、N的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•達(dá)州)如圖1,在直角坐標(biāo)系中,已知點(diǎn)A(0,2)、點(diǎn)B(-2,0),過點(diǎn)B和線段OA的中點(diǎn)C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點(diǎn)D的坐標(biāo)為
(-1,3)
(-1,3)
,點(diǎn)E的坐標(biāo)為
(-3,2)
(-3,2)

(2)若拋物線y=ax2+bx+c(a≠0)經(jīng)過A、D、E三點(diǎn),求該拋物線的解析式.
(3)若正方形和拋物線均以每秒
5
個(gè)單位長度的速度沿射線BC同時(shí)向上平移,直至正方形的頂點(diǎn)E落在y軸上時(shí),正方形和拋物線均停止運(yùn)動.
①在運(yùn)動過程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時(shí)間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.
②運(yùn)動停止時(shí),求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在Rt△OAB中,∠B=90°,AO=
12
,BA=2.把△OAB按如圖方式放置在直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,點(diǎn)A落在x軸正半軸上.求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,0),B點(diǎn)的坐標(biāo)為(0,b),且a、b滿足
a-b
+
a2-144
a+12
=0

(1)求證:∠OAB=∠OBA.
(2)如圖2,△OAB沿直線AB翻折得到△ABM,將OA繞點(diǎn)A旋轉(zhuǎn)到AF處,連接OF,作AN平分∠MAF交OF于N點(diǎn),連接BN,求∠ANB的度數(shù).
(3)如圖3,若D(0,4),EB⊥OB于B,且滿足∠EAD=45°,試求線段EB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC在直角坐標(biāo)系中,
(1)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A1B1C1,寫出A1、B1、C1的坐標(biāo)
(2)求出三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案