【題目】已知菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,∠BAD=120°,AC=4,則該菱形的面積是( 。
A.
B.
C.
D.8

【答案】B
【解析】解:∵四邊形ABCD是菱形,
∴AB=BC,OA=AC=2,OB=BD,AC⊥BD,∠BAD+∠ABC=180°,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC是等邊三角形,
∴AB=AC=4,
∴OB===2 ,
∴BD=2OB=4 ,
∴菱形ABCD的面積=ACBD=×4×4=8;
故選:B.
【考點(diǎn)精析】掌握菱形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P3,﹣5)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為( 。

A.(﹣3,﹣5B.5,3C.(﹣35D.3,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45

(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在對(duì)角線AC上,點(diǎn)F在邊BC上,連接BE、DF,DF交對(duì)角線AC于點(diǎn)G,且DE=DG.
(1)求證:AE=CG;
(2)試判斷BE和DF的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小林在某店購(gòu)買A、B商品共三次,只有一次購(gòu)買時(shí),商品A、B同時(shí)打折,其余兩次均按標(biāo)價(jià)購(gòu)買,三次購(gòu)買商品A、B的數(shù)量和費(fèi)用如下表:

購(gòu)買商品A的數(shù)量(個(gè))

購(gòu)買商品B的數(shù)量(個(gè))

購(gòu)買總費(fèi)用(元)

第一次購(gòu)物

6

5

1140

第二次購(gòu)物

3

7

1110

第三次購(gòu)物

9

8

1062


(1)小林以折扣價(jià)購(gòu)買商品A、B是第次購(gòu)物;
(2)求出商品A、B的標(biāo)價(jià);
(3)若商品A、B的折扣相同,問(wèn)商店是打幾折出售這兩種商品的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù).

(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)在圖①中,若EG=4,GF=6,求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三張正面分別寫(xiě)有數(shù)字-2,-1,1的卡片,它們的背面完全相同,將這三張卡片背面朝上洗勻后隨機(jī)抽取一張,以其正面的數(shù)字作為x的值。放回卡片洗勻,再?gòu)娜龔埧ㄆ须S機(jī)抽取一張,以其正面的數(shù)字作為y的值,兩次結(jié)果記為x,y。

1用樹(shù)狀圖或列表法表示x,y所有可能出現(xiàn)的結(jié)果;

2x,y表示平面直角坐標(biāo)系中的點(diǎn),求點(diǎn)x,y在函數(shù)圖象上的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不一定成立的是( 。
A.若a>b,則a+c>b+c
B.若a+c>b+c,則a>b
C.若a>b,則a>b
D.若a>b,則a>b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知直線ABAB外一點(diǎn)P,若過(guò)點(diǎn)P作一直線與AB平行,那么這樣的直線(  )

A. 有且只有一條

B. 有兩條

C. 不存在

D. 無(wú)數(shù)條

查看答案和解析>>

同步練習(xí)冊(cè)答案