【題目】如圖,在△ABC中,∠ACB=90°,點D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度數;(2)若∠ACB為α,則∠ECD的度數能否用含α的式子來表示.
【答案】見解析
【解析】試題分析:
(1)由AF垂直平分CD可得AC=AD,再由等腰三角形的“三線合一”可得∠FAB=∠CAB,同理可得∠GBA=∠CBA;如圖,設AF、BG相交于點O,則∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=135°,由此在四邊形GOFC中可得∠ECD=360°-∠CGO-∠CFO-∠GOF=360°-90°-90°-∠GOF=180°-135°=45°.
(2)思路同(1)只需把∠ACB=90°換成∠ACB= 可解得∠DCE=90°- .
試題解析:
(1)如圖,設AF、BG相交于點O,連接CO,
∵AF垂直平分CD,
∴AC=AD,∠CFO=90°,∴∠FAB=∠CAB.
同理可得:∠CGO=90°,∠GBA=∠CBA.
∴∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=90°+∠ACB=135°,
∵四邊形GOFC的內角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-135°
=45°.
(2)同(1)可得∠GOF=90°+∠ACB=90°+ ,∠CFO=90°,∠CGO=90°,
∵四邊形GOFC的內角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-(90°+ )
=90°- .
科目:初中數學 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數;
(2)試說明OD平分∠AOG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,P(2,2),點A在x軸正半軸上運動,點B在y軸上運動,且PA=PB.
(1)求證:PA⊥PB;
(2)若點A(8,0),求點B的坐標;
(3)求OA – OB的值;
(4)如圖2,若點B在y軸正半軸上運動時,直接寫出OA+OB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
組別 | 成績x分 | 頻數(人數) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】電影《流浪地球》深受人們喜歡,截止到2019年2月17日,票房達到3650000000,則數據3650000000科學記數法表示為( 。
A. 0.365×1010B. 36.5×108C. 3.65×108D. 3.65×109
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動,設運動時間為t秒,當t為何值時,以P,Q,C為頂點的三角形與ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com