【題目】星光廚具店購進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售其進(jìn)價與售價如表
進(jìn)價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,廚具店購進(jìn)這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進(jìn)貨廚具店賺錢最多?最大利潤是多少?
【答案】(1)1400元;(2)采購18臺電飯煲,32臺電壓鍋時,最大利潤是2180元.
【解析】
通過審題,表格顯示了兩種商品的進(jìn)價和售價;
(1)題目給出兩種電器的總數(shù)量和進(jìn)貨的總花費(fèi);設(shè)其中一個電器購進(jìn)x臺,則另一種電器購進(jìn)(30-x)臺,由購進(jìn)總費(fèi)用可以求各種電器的數(shù)量,然后再分別乘以每種電器的利潤,最后把各種電器的利潤相加起來;
(2)題目給出了兩種電器的數(shù)量之間的關(guān)系,同時記得結(jié)合表格中的數(shù)據(jù);可以設(shè)其中的一種電器數(shù)量為 n 臺,總利潤為z元,從而列出方程,根據(jù)兩種電器之間的數(shù)量關(guān)系,確定取值范圍,從而求出利潤的最大值.
解:(1)每件電飯鍋的利潤:250-200=50(元);每件電壓鍋的利潤:200-160=40(元)
設(shè)購進(jìn)的電飯煲x臺,則購進(jìn)的電壓鍋(30-x)臺.
由題意得:200x+160(30-x)=5600
解得:x=20
則電壓鍋:30-20=10(臺)
總利潤=50×20+40×10=1400 (元)
答:廚具店在該買賣中賺了1400元.
(2)設(shè)采購的電飯煲有n 臺,則采購的電壓鍋有(50-n)臺
由題意得:總利潤z=50n+40 (50-n)=2000+10n
∵n≤(50-n),
∴n≤
當(dāng)n=18時,總利潤z最大,則最大的利潤為2000+10×18=2180(元)
答:采購18臺電飯煲,32臺電壓鍋時,廚具店賺錢最多,最大利潤是2180元.
故答案為:(1)1400元;(2)采購18臺電飯煲,32臺電壓鍋時,最大利潤是2180元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,BC=2,以點(diǎn)A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為α(0°<α<180°),得到矩形AEFG,點(diǎn)B、點(diǎn)C、點(diǎn)D的對應(yīng)點(diǎn)分別為點(diǎn)E、點(diǎn)F、點(diǎn)G.
(1)如圖①,當(dāng)點(diǎn)E落在DC邊上時,直寫出線段EC的長度為 ;
(2)如圖②,當(dāng)點(diǎn)E落在線段CF上時,AE與DC相交于點(diǎn)H,連接AC,
①求證:△ACD≌△CAE;
②直接寫出線段DH的長度為 .
(3)如圖③設(shè)點(diǎn)P為邊FG的中點(diǎn),連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,△BEP的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸上,點(diǎn)A與點(diǎn)C關(guān)于y軸對稱,點(diǎn)E是線段AC上的點(diǎn)(點(diǎn)E不與點(diǎn)A、C重合)
(1)若點(diǎn)A的坐標(biāo)為(a,0),則點(diǎn)C的坐標(biāo)為 ;
(2)如圖1,點(diǎn)F是線段AB上的點(diǎn),若∠BEF=∠BAO,∠BAO=2∠OBE,求證:AF=CE;
(3)如圖2,若點(diǎn)D為AC上一點(diǎn),連接ED,滿足BE=BD,試探究∠ABE與∠DEC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)合作完成一項(xiàng)工程,需要12天完成,工程費(fèi)用共36000元,若甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程,乙工程隊(duì)所用的時間是甲工程隊(duì)的1.5倍,乙工程隊(duì)每天的費(fèi)用比甲工程隊(duì)少800元.
(1)問甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若讓一個工程隊(duì)單獨(dú)完成這項(xiàng)工程,哪個工程隊(duì)的費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AE=3,ED=,求BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下是兩張不同類型火車的車票:(“D×××次”表示動車,“G×××次”表示高鐵):
(1)根據(jù)車票中的信息填空:兩車行駛方向 ,出發(fā)時刻 (填“相同”或“不同”);
(2)已知該動車和高鐵的平均速度分別為200km/h,300km/h,如果兩車均按車票信息準(zhǔn)時出發(fā),且同時到達(dá)終點(diǎn),求A,B兩地之間的距離;
(3)在(2)的條件下,請求出在什么時刻兩車相距100km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車分別從A、B兩城同時沿高速公路駛向C城.已知A、C兩城的路程為500千米,B、C兩城的路程為450千米,甲車比乙車的速度快10千米/時,結(jié)果兩輛車同時到達(dá)C城,求兩車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.
證明:BD⊥AC,EF⊥AC(已知)
∴∠BDC=∠EFC=90°
∴BD∥
∠2=∠3
又∵∠1=∠2(已知)
∴∠1=∠3(等量代換)
∴DG∥
∴∠ADG=∠C
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com