【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距離O點240米.如果火車行駛時,周圍200米以內會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,
(1)A處是否會受到火車的影響,并寫出理由
(2)如果A處受噪音影響,求影響的時間.
科目:初中數學 來源: 題型:
【題目】八(1)班組織了一次經典誦讀比賽,甲、乙兩隊各10人的比賽成績如下表:
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊成績的中位數是 分,乙隊成績的眾數是 分;
(2)計算乙隊的方差;
(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:在中, ,.
(1)按下列步驟用尺規(guī)作圖(保留作圖痕跡,不寫出作法):作的平分線AD,交BC于D;
(2)在(1)中,過點D作,交AB于點E,若CD=4,則BC的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某課題小組為了了解某品牌電動自行車的銷售情況,對某專賣店第一季度該品牌A、B、C、D四種型號的銷售做了統(tǒng)計,繪制成如下兩幅統(tǒng)計圖(均不完整)
(1)該店第一季度售出這種品牌的電動自行車共多少輛?
(2)把兩幅統(tǒng)計圖補充完整;
(3)若該專賣店計劃訂購這四款型號的電動自行車1800輛,求C型電動自行車應訂購多少輛?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是圓O的切線,切點為A,AB是圓O的弦。過點B作BC//AD,交圓O于點C,連接AC,過點C作CD//AB,交AD于點D。連接AO并延長交BC于點M,交過點C的直線于點P,且BCP=ACD。
(1) 判斷直線PC與圓O的位置關系,并說明理由:
(2) 若AB=9,BC=6,求PC的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P從A向點D以1cm/s的速度運動,到點D即停止.點Q從點C向點B以2cm/s的速度運動,到點B即停止.直線PQ將四邊形ABCD截得兩個四邊形,分別為四邊形ABQP和四邊形PQCD,則當P,Q兩點同時出發(fā),幾秒后所截得兩個四邊形中,其中一個四邊形為平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,水庫大壩的橫斷面為四邊形ABCD,其中AD∥BC,壩頂BC=10米,壩高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角為30°.
(1)求壩底AD的長度(結果精確到1米);
(2)若壩長100米,求建筑這個大壩需要的土石料(參考數據: )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個運輸公司有甲、乙兩種貨車,兩次滿載的運輸情況如下表:
甲種貨車輛數 | 乙種貨車輛數 | 合計運貨噸數 | |
第一次 | 2 | 4 | 18 |
第二次 | 5 | 6 | 35 |
(1)求甲、乙兩種貨車每次滿載分別能運輸多少噸貨物;
(2)現有一批重34噸的貨物需要運輸,而甲、乙兩種貨車運輸的保養(yǎng)費用分別為80元/輛和40元/輛.公司打算由甲、乙兩種貨車共10輛來完成這次運輸,為了使保養(yǎng)費用不超過700元,公司該如何安排甲、乙兩種貨車來完成這次運輸任務.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次環(huán)保知識測試中,三年一班的兩名同學根據班級成績(分數為整數)分別繪制了不同的頻率分布直方圖,如圖1、2,已知圖1從左到右每個小組的頻率分別為0.04、0.08、0.24、0.32、0.20、0.12,其中68.5~76.5小組的頻數為12;圖2從左到右每個小組的頻數之比為1:2:4:7:6:3:2,請結合條件和頻率分布直方圖回答下列問題:
(1)三年一班參加測試的人數是多少?
(2)若這次測試的成績80分以上(含80分)為優(yōu)秀,則優(yōu)秀率是多少?
(3)若這次測試的成績60分以上(含60分)為及格,則及格率是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com