先化簡下列式子:
1
2
(x+y)2+
1
4
(x+y)+
1
3
(x+y)-
1
6
(x+y)2-
1
12
(x+y).再計(jì)算當(dāng)x+y=-2時(shí)原式的值.
分析:將x+y看做一個(gè)整體,合并得到最簡結(jié)果,將x+y的值代入計(jì)算即可求出值.
解答:解:原式=
1
3
(x+y)2-
1
2
(x+y),
當(dāng)x+y=-2時(shí),原式=
4
3
+1=
7
3
點(diǎn)評(píng):此題考查了整式的加減-化簡求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列內(nèi)容,然后解答問題:
“轉(zhuǎn)化”是初中數(shù)學(xué)的重要數(shù)學(xué)思想,轉(zhuǎn)化的目的是化繁為簡、化難為易.如計(jì)算
199009922
199009912+199009932-2
,若不借助計(jì)算器直接通過運(yùn)算求值是很繁的,但若設(shè)x=19900992,則原式=
x2
(x-1)2+(x+1)2-2
=
x2
2x2
=
1
2
,此題就很簡單了.
請(qǐng)你利用“轉(zhuǎn)化”思想求下列式子的值:(
1
2006
-
2008
20052-1
×
20042
20072-1
)×20062

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下列內(nèi)容,然后解答問題:
“轉(zhuǎn)化”是初中數(shù)學(xué)的重要數(shù)學(xué)思想,轉(zhuǎn)化的目的是化繁為簡、化難為易.如計(jì)算
199009922
199009912+199009932-2
,若不借助計(jì)算器直接通過運(yùn)算求值是很繁的,但若設(shè)x=19900992,則原式=
x2
(x-1)2+(x+1)2-2
=
x2
2x2
=
1
2
,此題就很簡單了.
請(qǐng)你利用“轉(zhuǎn)化”思想求下列式子的值:(
1
2006
-
2008
20052-1
×
20042
20072-1
)×20062

查看答案和解析>>

同步練習(xí)冊答案