【題目】已知如圖,矩形OABC的長(zhǎng)OA= ,寬OC=1,將△AOC沿AC翻折得△APC.

(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=﹣ x2+bx+c上,求b,c的值,并說(shuō)明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).

【答案】
(1)

解:在Rt△OAC中,OA= ,OC=1,則∠OAC=30°,∠OCA=60°;

根據(jù)折疊的性質(zhì)知:OA=AP= ,∠ACO=∠ACP=60°;

∵∠BCA=∠OAC=30°,且∠ACP=60°,

∴∠PCB=30°.


(2)

解:過(guò)P作PQ⊥OA于Q;

Rt△PAQ中,∠PAQ=60°,AP=

∴OQ=AQ= ,PQ= ,

所以P( , );

將P、A代入拋物線的解析式中,得:

解得 ;

即y=﹣ x2+ x+1;

當(dāng)x=0時(shí),y=1,故C(0,1)在拋物線的圖像上


(3)

解:①若DE是平行四邊形的對(duì)角線,點(diǎn)C在y軸上,CD平行x軸,

∴過(guò)點(diǎn)D作DM∥CE交x軸于M,則四邊形EMDC為平行四邊形,

把y=1代入拋物線解析式得點(diǎn)D的坐標(biāo)為( ,1)

把y=0代入拋物線解析式得點(diǎn)E的坐標(biāo)為(﹣ ,0)

∴M( ,0);N點(diǎn)即為C點(diǎn),坐標(biāo)是(0,1);

②若DE是平行四邊形的邊,

過(guò)點(diǎn)A作AN∥DE交y軸于N,四邊形DANE是平行四邊形,

∴DE=AN= = =2,

∵tan∠EAN= ,

∴∠EAN=30°,

∵∠DEA=∠EAN,

∴∠DEA=30°,

∴M( ,0),N(0,﹣1);

同理過(guò)點(diǎn)C作CM∥DE交y軸于N,四邊形CMDE是平行四邊形,

∴M(﹣ ,0),N(0,1).


【解析】(1)根據(jù)OC、OA的長(zhǎng),可求得∠OCA=∠ACP=60°(折疊的性質(zhì)),∠BCA=∠OAC=30°,由此可判斷出∠PCB的度數(shù).(2)過(guò)P作PQ⊥OA于Q,在Rt△PAQ中,易知PA=OA=3,而∠PAO=2∠PAC=60°,即可求出AQ、PQ的長(zhǎng),進(jìn)而可得到點(diǎn)P的坐標(biāo),將P、A坐標(biāo)代入拋物線的解析式中,即可得到b、c的值,從而確定拋物線的解析式,然后將C點(diǎn)坐標(biāo)代入拋物線的解析式中進(jìn)行驗(yàn)證即可.(3)根據(jù)拋物線的解析式易求得C、D、E點(diǎn)的坐標(biāo),然后分兩種情況考慮:
①DE是平行四邊形的對(duì)角線,由于CD∥x軸,且C在y軸上,若過(guò)D作直線CE的平行線,那么此直線與x軸的交點(diǎn)即為M點(diǎn),而N點(diǎn)即為C點(diǎn),D、E的坐標(biāo)已經(jīng)求得,結(jié)合平行四邊形的性質(zhì)即可得到點(diǎn)M的坐標(biāo),而C點(diǎn)坐標(biāo)已知,即可得到N點(diǎn)的坐標(biāo);
②DE是平行四邊形的邊,由于A在x軸上,過(guò)A作DE的平行線,與y軸的交點(diǎn)即為N點(diǎn),而M點(diǎn)即為A點(diǎn);易求得∠DEA的度數(shù),即可得到∠NAO的度數(shù),已知OA的長(zhǎng),通過(guò)解直角三角形可求得ON的值,從而確定N點(diǎn)的坐標(biāo),而M點(diǎn)與A點(diǎn)重合,其坐標(biāo)已知;
同理,由于C在y軸上,且CD∥x軸,過(guò)C作DE的平行線,也可找到符合條件的M、N點(diǎn),解法同上.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員12場(chǎng)比賽得分情況用圖表示如下:

對(duì)這兩名運(yùn)動(dòng)員的成績(jī)進(jìn)行比較,下列四個(gè)結(jié)論中,不正確的是(

A. 甲運(yùn)動(dòng)員得分的極差大于乙運(yùn)動(dòng)員得分的極差

B. 甲運(yùn)動(dòng)員得分的中位數(shù)大于乙運(yùn)動(dòng)員得分的中位數(shù)

C. 甲運(yùn)動(dòng)員得分的平均數(shù)大于乙運(yùn)動(dòng)員得分的平均數(shù)

D. 甲運(yùn)動(dòng)員的成績(jī)比乙運(yùn)動(dòng)員的成績(jī)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張如圖1的長(zhǎng)為,寬為的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分兩個(gè)長(zhǎng)方用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則,滿足( )

A. B.=2 C=3 D.=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件衣服250元,先降價(jià)20%,再在降價(jià)后的基礎(chǔ)上漲價(jià)20%,現(xiàn)在的價(jià)格比原來(lái)的價(jià)格(

A.降低了B.升高了C.沒(méi)有變D.無(wú)法計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小明和弟弟從家出發(fā),步行去吉林省圖書(shū)館學(xué)習(xí).出發(fā)2分鐘后,小明發(fā)現(xiàn)弟弟的數(shù)學(xué)書(shū)忘記帶了,弟弟繼續(xù)按原速前往圖書(shū)館,小明按原路原速返回家取書(shū),然后騎自行前往圖書(shū)館,恰好與弟弟同時(shí)到達(dá)圖書(shū)館.小明和弟弟各自距家的路程ym)與小明步行的時(shí)間xmin)之間的函數(shù)圖象如圖所示.

1)求a的值.

2)求小明取回書(shū)后yx的函數(shù)關(guān)系式.

3)直接寫(xiě)出小明取回書(shū)后與弟弟相距100m的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車作為一種低碳、時(shí)尚、綠色的出行方式,它儼然成為市民出行的新寵”.某公司準(zhǔn)備安裝A款共享單車,完成5760輛該款共享單車投入市場(chǎng)運(yùn)營(yíng)的計(jì)劃.由于抽調(diào)不出足夠的熟練工人完成安裝,公司準(zhǔn)備招聘一批新工人,將他們培訓(xùn)到能獨(dú)立進(jìn)行安裝后上崗。生產(chǎn)開(kāi)始后發(fā)現(xiàn):4名熟練工人和5名新工人每天共安裝88輛共享單車;2名熟練工人每天安裝的共享單車數(shù)與3名新工人每天安裝的共享單車數(shù)一樣多.

(1)求每名熟練工人和新工人每天分別可以安裝多少輛共享單車?

(2)若公司招聘m名新工人,使得招聘的新工人和抽調(diào)的熟練工人剛好一個(gè)月(30)完成安裝任務(wù),已知工人們安裝的共享單車中不能正常投入運(yùn)營(yíng)的占4%,且招聘的新工人數(shù)比抽調(diào)的熟練工人數(shù)少,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,已知AB=AC,BAC和∠ACB的平分線相交于點(diǎn)D,ADC=125°,求∠ACB和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28


(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫(xiě)出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,線段AD的垂直平分線交AC于點(diǎn)N,△CND的周長(zhǎng)是10,則AC的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案