【題目】如圖,在中,,點(diǎn)D邊上,且,將沿直線翻折得到,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E與邊交于點(diǎn)F,則的長(zhǎng)為_____________.

【答案】

【解析】

過(guò)AAHBCH,由等腰三角形的性質(zhì)得出BH=CH,∠B=C,由tanB=

=,設(shè)AH=x,則BH=3x,在RtABH中,由勾股定理得出方程,求出BH=CH=3DH=CH-CD=2,BD=BH+DH=5,由折疊可得,BD=DE,∠E=ABC=CAB=AE=4,證明AFE∽△DFC,得出===, 設(shè)CF=a,則EF=4a,AF=4-a,得出DF=, DF+EF=DE=5得出方程,求出a的值,即可得出EF的長(zhǎng).

解:如圖所示,過(guò)AAHBCH,

AB=AC=4,∴BH=CH,∠B=C,

tanB==,

設(shè)AH=x,則BH=3x,在RtABH中,由勾股定理得:

(3x)2+x2=42,

解得:x=1
BH=CH=3,
DH=CH-CD=2,
BD=BH+DH=5
由折疊可得,BD=DE,∠E=ABC=CAB=AE=4,
又∵∠AFE=DFC,
∴△AFE∽△DFC,

===,

設(shè)CF=a,則EF=4a,AF=4-a
DF=AF=1-a,
DF+EF=DE=5
4a+1-a=5,
解得:a=,

EF=4×=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=2,AC=2,點(diǎn)DBC的中點(diǎn),點(diǎn)E是邊AB上一動(dòng)點(diǎn),沿DE所在直線把BDE翻折到B′DE的位置,B′DAB于點(diǎn)F.若AB′F為直角三角形,則AE的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同樣條件下對(duì)某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.

試驗(yàn)種子n(粒)

1

5

50

100

200

500

1000

2000

3000

發(fā)芽頻數(shù)m

1

4

45

92

188

476

951

1900

2850

發(fā)芽頻率

0

0.80

0.90

0.92

0.94

0.952

0.951

a

b

(1)計(jì)算表中a,b的值;

(2)估計(jì)該麥種的發(fā)芽概率;

(3)如果該麥種發(fā)芽后,只有87%的麥芽可以成活,現(xiàn)有100kg麥種,則有多少千克的麥種可以成活為秧苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC3,BC4,動(dòng)點(diǎn)P在線段BC上,點(diǎn)Q在線段AB上,且PQBQ,延長(zhǎng)QP交射線AC于點(diǎn)D

1)求證:QAQD;

2)設(shè)∠BAPα,當(dāng)2tanα是正整數(shù)時(shí),求PC的長(zhǎng);

3)作點(diǎn)Q關(guān)于AC的對(duì)稱點(diǎn)Q′,連結(jié)QQ′,AQ′,DQ′,延長(zhǎng)BC交線段DQ′于點(diǎn)E,連結(jié)AE,QQ′分別與APAE交于點(diǎn)M,N(如圖2所示).若存在常數(shù)k,滿足kMNPEQQ′,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃購(gòu)買(mǎi)排球、籃球,已知購(gòu)買(mǎi)1個(gè)排球與1個(gè)籃球的總費(fèi)用為180元;3個(gè)排球與2個(gè)籃球的總費(fèi)用為420元.

(1)求購(gòu)買(mǎi)1個(gè)排球、1個(gè)籃球的費(fèi)用分別是多少元?

(2)若該學(xué)校計(jì)劃購(gòu)買(mǎi)此類排球和籃球共60個(gè),并且籃球的數(shù)量不超過(guò)排球數(shù)量的2倍.求至少需要購(gòu)買(mǎi)多少個(gè)排球?并求出購(gòu)買(mǎi)排球、籃球總費(fèi)用的最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線相切于點(diǎn)T,直線相交于兩點(diǎn),連接.

1)求證:;

2)若,請(qǐng)直接寫(xiě)出圖中陰影部分的面積(結(jié)果保留無(wú)理數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是12,3,4 的四張撲克牌背面朝上,洗勻后放在桌面上.

(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____

(2)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求組成的兩位數(shù)恰好是 4 的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解居民的環(huán)保意識(shí),社區(qū)工作人員在光明小區(qū)隨機(jī)抽取了若干名居民開(kāi)展主題為打贏藍(lán)天保衛(wèi)戰(zhàn)的環(huán)保知識(shí)有獎(jiǎng)問(wèn)答活動(dòng),并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計(jì)圖(得分為整數(shù),滿分為10分,最低分為6分)

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)本次調(diào)查一共抽取了   名居民;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對(duì)該小區(qū)500名居民開(kāi)展這項(xiàng)有獎(jiǎng)問(wèn)答活動(dòng),得10分者設(shè)為一等獎(jiǎng),請(qǐng)你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計(jì)需準(zhǔn)備多少份一等獎(jiǎng)獎(jiǎng)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的平分線相交于點(diǎn)P,,PBCE交于點(diǎn)HBCF,交ABG,下列結(jié)論:①;②;③ BP垂直平分CE;④,其中正確的判斷有(

A. ①②B. ③④C. ①③④D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案