如圖,等腰梯形ABCD中,AD∥BC,∠DBC=45°.翻折梯形ABCD,使點B重合于點D,折痕分別交邊AB、BC于點F、E,若AD=2,BC=8,
求:(1)梯形ABCD的面積;
(2)BE的長;
(3)∠CDE的正切值.

【答案】分析:(1)由軸對稱的性質(zhì)可以得出△BFE≌△DFE,從而得出DE=BE,由∠DBC=45°可以得出∠BED=90°,過A作AG⊥BC于G,可以求出BG=3,可以求出BE的值.
(2)由DE=BE,可以求出梯形的高DE,根據(jù)梯形的面積公式可以求出其面積.
(3)由∠CDE的正切值=DE:CE,由(1)、(2)的結(jié)論可以求出其值.
解答:解:(1)(2)∵EF是點B、D的對稱軸,
∴△BFE≌△DFE,
∴DE=BE.
∵在△BDE中,DE=BE,∠DBE=45°,
∴∠BDE=∠DBE=45°.
∴∠DEB=90°,
∴DE⊥BC.
在等腰梯形ABCD中,AD=2,BC=8,
過A作AG⊥BC于G,
∵四邊形AGED是矩形.
∴AD=GE=2,AG=DE.
∵四邊形ABCD是等腰梯形,
∴AB=CD,
∵∠AGB=∠DEC=90°
Rt△ABG和Rt△DCE中,
,
∴Rt△ABG≌Rt△DCE(HL),
∴BG=EC=3.
∴BE=5
∴梯形的面積為:(2+8)×5=25
 

(3)由(2)得,DE=BE=5.
在△DEC中,∠DEC=90°,DE=5,EC=3,
所以tan∠CDE==
點評:本題考查了等腰三角形的性質(zhì),翻折變換,全等三角形的判定,解直角三角形的運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求證:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•昌平區(qū)二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求證:AB=AD;
(2)求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,對角線BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度數(shù); 
(2)求梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延長BC到E,使CE=AD.
(1)求證:BD=DE;
(2)當DC=2時,求梯形面積.

查看答案和解析>>

同步練習冊答案