【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長.

【答案】
(1)解:由旋轉(zhuǎn)的性質(zhì)得:△ABC≌△ADE,且AB=AC,

∴AE=AD,AC=AB,∠BAC=∠DAE,

∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,

在△AEC和△ADB中,

∴△AEC≌△ADB(SAS)


(2)解:∵四邊形ADFC是菱形,且∠BAC=45°,

∴∠DBA=∠BAC=45°,

由(1)得:AB=AD,

∴∠DBA=∠BDA=45°,

∴△ABD為直角邊為2的等腰直角三角形,

∴BD2=2AB2,即BD=2 ,

∴AD=DF=FC=AC=AB=2,

∴BF=BD﹣DF=2 ﹣2


【解析】(1)由旋轉(zhuǎn)的性質(zhì)得到三角形ABC與三角形ADE全等,以及AB=AC,利用全等三角形對應(yīng)邊相等,對應(yīng)角相等得到兩對邊相等,一對角相等,利用SAS得到三角形AEC與三角形ADB全等即可;(2)根據(jù)∠BAC=45°,四邊形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD為等腰直角三角形,求出BD的長,由BD﹣DF求出BF的長即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字﹣1,0,1的乒乓球(形狀,大小一樣),先從盒子里隨即取出一個(gè)乒乓球,記下數(shù)字后放回盒子,搖勻后再隨即取出一個(gè)乒乓球,記下數(shù)字.
(1)請用樹狀圖或列表的方法求兩次取出乒乓球上數(shù)字相同的概率;
(2)求兩次取出乒乓球上數(shù)字之積等于0的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)75°,點(diǎn)E的對應(yīng)點(diǎn)N恰好落在OA上,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,取BC的中點(diǎn)P.當(dāng)點(diǎn)B從點(diǎn)O向x軸正半軸移動(dòng)到點(diǎn)M(2,0)時(shí),則點(diǎn)P移動(dòng)的路線長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點(diǎn)A(2,﹣3)和點(diǎn)B(n,2).
(1)求直線與雙曲線的表達(dá)式;
(2)對于橫、縱坐標(biāo)都是整數(shù)的點(diǎn)給出名稱叫整點(diǎn).動(dòng)點(diǎn)P是雙曲線y= (m≠0)上的整點(diǎn),過點(diǎn)P作垂直于x軸的直線,交直線AB于點(diǎn)Q,當(dāng)點(diǎn)P位于點(diǎn)Q下方時(shí),請直接寫出整點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,,FAD的中點(diǎn),作,垂足E在線段上,連接EF、CF,則下列結(jié)論;,中一定成立的是______ 把所有正確結(jié)論的序號都填在橫線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)y= (x>0)的圖象上運(yùn)動(dòng),PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,線段PM、PN分別與直線AB:y=﹣x+1交于點(diǎn)E,F(xiàn),則AFBE的值為( )

A.4
B.2
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點(diǎn)P,且∠D+C=200°,則∠P=( )

A. 10 ° B .20 ° C .30° D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.

(1)當(dāng)t為何值時(shí),PQ∥AB?
(2)當(dāng)t=3時(shí),求△QMC的面積;
(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案