【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0).
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).
【答案】
(1)
解:設(shè)y=a(x+1)(x﹣6)(a≠0),
把B(5,﹣6)代入:a(5+1)(5﹣6)=﹣6,
a=1,
∴y=(x+1)(x﹣6)=x2﹣5x﹣6
(2)
解:存在,
如圖1,分別過(guò)P、B向x軸作垂線PM和BN,垂足分別為M、N,
設(shè)P(m,m2﹣5m﹣6),四邊形PACB的面積為S,
則PM=﹣m2+5m+6,AM=m+1,MN=5﹣m,CN=6﹣5=1,BN=5,
∴S=S△AMP+S梯形PMNB+S△BNC
= (﹣m2+5m+6)(m+1)+ (6﹣m2+5m+6)(5﹣m)+ ×1×6
=﹣3m2+12m+36
=﹣3(m﹣2)2+48,
當(dāng)m=2時(shí),S有最大值為48,這時(shí)m2﹣5m﹣6=22﹣5×2﹣6=﹣12,
∴P(2,﹣12),
(3)
解:這樣的Q點(diǎn)一共有5個(gè),連接Q3A、Q3B,
y=x2﹣5x﹣6=(x﹣ )2﹣ ;
因?yàn)镼3在對(duì)稱軸上,所以設(shè)Q3( ,y),
∵△Q3AB是等腰三角形,且Q3A=Q3B,
由勾股定理得:( +1)2+y2=( ﹣5)2+(y+6)2,
y=﹣ ,
∴Q3( ,﹣ ).
【解析】(1)拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0),可利用兩點(diǎn)式法設(shè)拋物線的解析式為y=a(x+1)(x﹣6),代入B(5,﹣6)即可求得函數(shù)的解析式;(2)作輔助線,將四邊形PACB分成三個(gè)圖形,兩個(gè)三角形和一個(gè)梯形,設(shè)P(m,m2﹣5m﹣6),四邊形PACB的面積為S,用字母m表示出四邊形PACB的面積S,發(fā)現(xiàn)是一個(gè)二次函數(shù),利用頂點(diǎn)坐標(biāo)求極值,從而求出點(diǎn)P的坐標(biāo).(3)分三種情況畫圖:①以A為圓心,AB為半徑畫弧,交對(duì)稱軸于Q1和Q4 , 有兩個(gè)符合條件的Q1和Q4;②以B為圓心,以BA為半徑畫弧,也有兩個(gè)符合條件的Q2和Q5;③作AB的垂直平分線交對(duì)稱軸于一點(diǎn)Q3 , 有一個(gè)符合條件的Q3;最后利用等腰三角形的腰相等,利用勾股定理列方程求出Q3坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是( 。
A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長(zhǎng)為( )
A.3
B.4
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD、PO.
(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當(dāng)∠PBA的度數(shù)為時(shí),四邊形BPDO是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD、PO.
(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當(dāng)∠PBA的度數(shù)為時(shí),四邊形BPDO是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P1 , P2 , P3 , P4均在坐標(biāo)軸上,且P1P2⊥P2P3 , P2P3⊥P3P4 , 若點(diǎn)P1 , P2的坐標(biāo)分別為(0,﹣1),(﹣2,0),則點(diǎn)P4的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點(diǎn),過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H.
(1)判斷DH與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:H為CE的中點(diǎn);
(3)若BC=10,cosC= ,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EB為半圓O的直徑,點(diǎn)A在EB的延長(zhǎng)線上,AD切半圓O于點(diǎn)D,BC⊥AD于點(diǎn)C,AB=2,半圓O的半徑為2,則BC的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC= ,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com